Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2015 ; Vol.25-8: 1234~1240

AuthorDongjin Choi, Hye Ji Oh, Chul Jun Goh, Kangseok Lee, Yoonsoo Hahn
Place of dutyDepartment of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
TitleHeat Shock RNA 1, Known as a Eukaryotic Temperature-Sensing Noncoding RNA, Is of Bacterial Origin
PublicationInfo J. Microbiol. Biotechnol.2015 ; Vol.25-8
AbstractHeat shock RNA 1 (HSR1) is described as a “eukaryotic heat-sensing noncoding RNA” that regulates heat shock response in human and other eukaryotic cells. Highly conserved HSR1 sequences have been identified from humans, hamsters, Drosophila, Caenorhabditis elegans, and Arabidopsis. In a previous study, however, it was suggested that HSR1 had originated from a bacterial genome. HSR1 showed no detectible nucleotide sequence similarity to any eukaryotic sequences but harbored a protein coding region that showed amino-acid sequence similarity to bacterial voltage-gated chloride channel proteins. The bacterial origin of HSR1 was not convincible because the nucleotide sequence similarity was marginal. In this study, we have found that a genomic contig sequence of Comamonas testosteroni strain JL14 contained a sequence virtually identical to that of HSR1, decisively confirming the bacterial origin of HSR1. Thus, HSR1 is an exogenous RNA, which can ectopically trigger heat shock response in eukaryotes. Therefore, it is no longer appropriate to cite HSR1 as a “eukaryotic functional noncoding RNA.”
Full-Text
Supplemental Data
Key_wordHeat Shock RNA-1, heat shock response, bacterial sequence, Comamonas testosteroni
References
  1. Abdullah Z, Knolle PA. 2014. Scaling of immune responses against intracellular bacterial infection. EMBO J. 33: 2283-2294.
    Pubmed CrossRef Pubmed Central
  2. Akerfelt M, Morimoto RI, Sistonen L. 2010. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11: 545-555.
    Pubmed CrossRef Pubmed Central
  3. Anckar J, Sistonen L. 2011. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80: 1089-1115.
    Pubmed CrossRef
  4. Bellanger X, Payot S, Leblond-Bourget N, Guedon G. 2014. Conjugative and mobilizable genomic islands in bacteria:evolution and diversity. FEMS Microbiol. Rev. 38: 720-760.
    Pubmed CrossRef
  5. Berleman J, Auer M. 2013. The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ Microbiol. 15: 347-354.
    Pubmed CrossRef
  6. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797.
    Pubmed CrossRef Pubmed Central
  7. Farshad S, Norouzi F, Aminshahidi M, Heidari B, Alborzi A. 2012. Two cases of bacteremia due to an unusual pathogen, Comamonas testosteroni in Iran and a review literature. J. Infect. Dev. Ctries. 6: 521-525.
    Pubmed
  8. Fukuda K, Hosoyama A, Tsuchikane K, Ohji S, Yamazoe A, Fujita N, et al. 2014. Complete genome sequence of polychlorinated biphenyl degrader Comamonas testosteroni TK102 (NBRC 109938). Genome Announc. 2: e00865-14.
    Pubmed CrossRef Pubmed Central
  9. Geisler S, Coller J. 2013. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol. 14: 699-712.
    Pubmed CrossRef Pubmed Central
  10. Gong W, Kisiela M, Schilhabel MB, Xiong G, Maser E. 2012. Genome sequence of Comamonas testosteroni ATCC 11996, a representative strain involved in steroid degradation. J. Bacteriol. 194: 1633-1634.
    Pubmed CrossRef Pubmed Central
  11. Ivashuta S, Zhang Y, Wiggins BE, Ramaseshadri P, Segers GC, Johnson S, et al. 2015. Environmental RNAi in herbivorous insects. RNA 21: 840-850.
    Pubmed CrossRef Pubmed Central
  12. Iyer R, Iverson TM, Accardi A, Miller C. 2002. A biological role for prokaryotic ClC chloride channels. Nature 419: 715-718.
    Pubmed CrossRef
  13. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9.
    Pubmed CrossRef Pubmed Central
  14. Kim DS, Lee Y, Hahn Y. 2010. Evidence for bacterial origin of heat shock RNA-1. RNA 16: 274-279.
    Pubmed CrossRef Pubmed Central
  15. Kim MK, Kim YJ, Cho DH, Yi TH, Soung NK, Yang DC. 2007. Solimonas soli gen. nov., sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 57: 2591-2594.
    Pubmed CrossRef
  16. Kim SJ, Moon JY, Weon HY, Ahn JH, Chen WM, Kwon SW. 2014. Solimonas terrae sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 64: 1218-1222.
    Pubmed CrossRef
  17. Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64: 163-184.
    Pubmed CrossRef Pubmed Central
  18. Lakhotia SC. 2012. Long non-coding RNAs coordinate cellular responses to stress. Wiley Interdiscip. Rev. RNA 3: 779-796.
    Pubmed CrossRef
  19. Liu L, Zhu W, Cao Z, Xu B, Wang G, Luo M. 2015. High correlation between genotypes and phenotypes of environmental bacteria Comamonas testosteroni strains. BMC Genomics 16: 110.
    Pubmed CrossRef Pubmed Central
  20. Ma YF, Zhang Y, Zhang JY, Chen DW, Zhu Y, Zheng H, et al. 2009. The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. Appl. Environ. Microbiol. 75: 6812-6819.
    Pubmed CrossRef Pubmed Central
  21. Maldonado-Bonilla LD, Eschen-Lippold L, Gago-Zachert S, Tabassum N, Bauer N, Scheel D, Lee J. 2014. The Arabidopsis tandem zinc finger 9 protein binds RNA and mediates pathogen-associated molecular pattern-triggered immune responses. Plant Cell Physiol. 55: 412-425.
    Pubmed CrossRef
  22. McEwan DL, Weisman AS, Hunter CP. 2012. Uptake of extracellular double-stranded RNA by SID-2. Mol. Cell 47:746-754.
    Pubmed CrossRef Pubmed Central
  23. Nseir W, Khateeb J, Awawdeh M, Ghali M. 2011. Catheterrelated bacteremia caused by Comamonas testosteroni in a hemodialysis patient. Hemodial. Int. 15: 293-296.
    Pubmed CrossRef
  24. Orsini J, Tam E, Hauser N, Rajayer S. 2014. Polymicrobial bacteremia involving Comamonas testosteroni. Case Rep. Med. 2014: 578127.
    Pubmed CrossRef Pubmed Central
  25. Pearson WR, Lipman DJ. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444-2448.
    Pubmed CrossRef Pubmed Central
  26. Place RF, Noonan EJ. 2014. Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones 19:159-172.
    Pubmed CrossRef Pubmed Central
  27. Ponting CP, Oliver PL, Reik W. 2009. Evolution and functions of long noncoding RNAs. Cell 136: 629-641.
    Pubmed CrossRef
  28. Rojas-Jimenez K, Sohlenkamp C, Geiger O, MartinezRomero E, Werner D, Vinuesa P. 2005. A ClC chloride channel homolog and ornithine-containing membrane lipids of Rhizobium tropici CIAT899 are involved in symbiotic efficiency and acid tolerance. Mol. Plant Microbe Interact. 18:1175-1185.
    Pubmed CrossRef
  29. Schleheck D, Knepper TP, Fischer K, Cook AM. 2004. Mineralization of individual congeners of linear alkylbenzenesulfonate by defined pairs of heterotrophic bacteria. Appl. Environ. Microbiol. 70: 4053-4063.
    Pubmed CrossRef Pubmed Central
  30. Schwartz S, Elnitski L, Li M, Weirauch M, Riemer C, Smit A, et al. 2003. MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences. Nucleic Acids Res. 31: 3518-3524.
    Pubmed CrossRef Pubmed Central
  31. Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E. 2006. RNA-mediated response to heat shock in mammalian cells. Nature 440: 556-560.
    Pubmed CrossRef
  32. Shamovsky I, Nudler E. 2009. Isolation and characterization of the heat shock RNA 1. Methods Mol. Biol. 540: 265-279.
    Pubmed CrossRef Pubmed Central
  33. Sheu SY, Cho NT, Arun AB, Chen WM. 2011. Proposal of Solimonas aquatica sp. nov., reclassification of Sinobacter flavus Zhou et al. 2008 as Solimonas flava comb. nov. and Singularimonas variicoloris Friedrich and Lipski 2008 as Solimonas variicoloris comb. nov. and emended descriptions of the genus Solimonas and its type species Solimonas soli. Int. J. Syst. Evol. Microbiol. 61: 2284-2291.
    Pubmed CrossRef
  34. Tsui TL, Tsao SM, Liu KS, Chen TY, Wang YL, Teng YH, Lee YT. 2011. Comamonas testosteroni infection in Taiwan:reported two cases and literature review. J. Microbiol. Immunol. Infect. 44: 67-71.
    Pubmed CrossRef
  35. Whangbo JS, Hunter CP. 2008. Environmental RNA interference. Trends Genet. 24: 297-305.
    Pubmed CrossRef
  36. Willems A, De Vos P. 2006. Comamonas, p. 723-736. The Prokaryotes. Springer, New York.
  37. Wilusz JE, Sunwoo H, Spector DL. 2009. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 23: 1494-1504.
    Pubmed CrossRef Pubmed Central
  38. Wozniak RA, Waldor MK. 2010. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev. Microbiol. 8: 552-563.
    Pubmed CrossRef
  39. Xiong J, Li D, Li H, He M, Miller SJ, Yu L, et al. 2011. Genome analysis and characterization of zinc efflux systems of a highly zinc-resistant bacterium, Comamonas testosteroni S44. Res. Microbiol. 162: 671-679.
    Pubmed CrossRef
  40. Zhou Y, Zhang YQ, Zhi XY, Wang X, Dong J, Chen Y, et al. 2008. Description of Sinobacter flavus gen. nov., sp. nov., and proposal of Sinobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 58: 184-189.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd