Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2015 ; Vol.25-6: 872~879

AuthorMin-Ju Kim, Jae-kwang Han, Jong-Su Park, Jin-Sung Lee, Soon-Ho Lee, Joon-Il Cho, Keun-Sung Kim
Place of dutyDepartment of Food Science and Technology, Chung-Ang University, Ansung 456-756, Republic of Korea
TitleVarious Enterotoxin and Other Virulence Factor Genes Widespread Among Bacillus cereus and Bacillus thuringiensis Strains
PublicationInfo J. Microbiol. Biotechnol.2015 ; Vol.25-6
AbstractMany strains of Bacillus cereus cause gastrointestinal diseases, and the closely related insect pathogen Bacillus thuringiensis has also been involved in outbreaks of diarrhea. The diarrheal diseases are attributed to enterotoxins. Sixteen reference strains of B. cereus and nine commercial and 12 reference strains of B. thuringiensis were screened by PCR for the presence of 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, bceT, entFM, and entS), one emetogenic gene (ces), seven hemolytic genes (hlyA, hlyII, hlyIII, plcA, cerA, cerB, and cerO), and a pleiotropic transcriptional activator gene (plcR). These genes encode various enterotoxins and other virulence factors thought to play a role in infections of mammals. Amplicons were successfully generated from the strains of B. cereus and B. thuringiensis for each of these sequences, except the ces gene. Intriguingly, the majority of these B. cereus enterotoxin genes and other virulence factor genes appeared to be widespread among B. thuringiensis strains as well as B. cereus strains.
Full-Text
Key_wordBacillus cereus, Bacillus thuringiensis, enterotoxins, virulence factors, genes
References
  1. Agata N, Ohta M, Arakawa Y, Mori M. 1995. The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiology 141: 983-988.
    Pubmed CrossRef
  2. Asano SI, Nukumizu Y, Bando H, Iizuka T, Yamamoto T. 1997. Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 63: 1054-1057.
    Pubmed Pubmed Central
  3. Baida GE, Kuzmin NP. 1995. Cloning and primary structure of a new hemolysin gene from Bacillus cereus. Biochim. Biophys. Acta 1264: 151-154.
    CrossRef
  4. Beecher DJ, Wong AC. 2000. Tripartite haemolysin BL:isolation and characterization of two distinct homologous sets of components from a single Bacillus cereus isolate. Microbiology 146: 1371-1380.
    Pubmed CrossRef
  5. Bottone EJ. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23: 382-398.
    Pubmed CrossRef Pubmed Central
  6. Ceuppens S, Uyttendaele M, Drieskens K, Heyndrickx M, Rajkovic A, Boon N, Van de Wiele T. 2012. Survival and germination of Bacillus cereus spores without outgrowth or enterotoxin production during in vitro simulation of gastrointestinal transit. Appl. Environ. Microbiol. 78: 7698-7705.
    Pubmed CrossRef Pubmed Central
  7. Ceuppens S, Van de Wiele T, Rajkovic A, Ferrer-Cabaceran T, Heyndrickx M, Boon N, Uyttendaele M. 2012. Impact of intestinal microbiota and gastrointestinal conditions on the in vitro survival and growth of Bacillus cereus. Int. J. Food Microbiol. 155: 241-246.
    Pubmed CrossRef
  8. Chattopadhyay A, Bhatnagar NB, Bhatnagar R. 2004. Bacterial insecticidal toxins. Crit. Rev. Microbiol. 30: 33-54.
    Pubmed CrossRef
  9. Cherif A, Brusetti L, Borin S, Rizzi A, Boudabous A, Khyami-Horani H, Daffonchio D. 2003. Genetic relationship in the 'Bacillus cereus group' by rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment. J. Appl. Microbiol. 94: 1108-1119.
    Pubmed CrossRef
  10. Ehling-Schulz M, Vukov N, Schulz A, Shaheen R, Andersson M, Märtlbauer E, Scherer S. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105-113.
    Pubmed CrossRef Pubmed Central
  11. Fagerlund A, Ween O, Lund T, Hardy SP, Granum PE. 2004. Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 150: 2689-2697.
    Pubmed CrossRef
  12. Frederiksen K, Rosenquist H, Jørgensen K, Wilcks A. 2006. Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables. Appl. Environ. Microbiol. 72: 3435-3440.
    Pubmed CrossRef Pubmed Central
  13. Gilmore MS, Cruz-Rodz AL, Leimeister-Wachter M, Kreft J, Goebel W. 1989. A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J. Bacteriol. 171: 744-753.
    Pubmed CrossRef Pubmed Central
  14. Granum PE, O'Sullivan K, Lund T. 1999. The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177: 225-229.
    Pubmed CrossRef
  15. Green M, Heumann M, Sokolow R, Foster LR, Bryant R, Skeels M. 1990. Public health implications of the microbial pesticide Bacillus thuringiensis: an epidemiological study, Oregon, 1985-86. Am. J. Public Health 80: 848-852.
    Pubmed CrossRef Pubmed Central
  16. Guinebretiere MH, Broussolle V, Nguyen-The C. 2002. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40: 3053-3056.
    Pubmed CrossRef Pubmed Central
  17. Guinebretiere MH, Thompson FL, Sorokin A, Normand P, Dawyndt P, Ehling-Schulz M, et al. 2008. Ecological diversification in the Bacillus cereus group. Environ. Microbiol. 10: 851-865.
    Pubmed CrossRef
  18. Hansen BM, Hendriksen NB. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67: 185-189.
    Pubmed CrossRef Pubmed Central
  19. Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, et al. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66: 2627-2630.
    Pubmed CrossRef Pubmed Central
  20. Hendriksen NB, Hansen BM, Johansen JE. 2006. Occurrence and pathogenic potential of Bacillus cereus group bacteria in a sandy loam. Antonie Van Leeuwenhoek 89: 239-249.
    Pubmed CrossRef
  21. Jensen GB, Hansen BM, Eilenberg J, Mahillon J. 2003. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5: 631-640
    Pubmed CrossRef
  22. Jensen GB, Larsen P, Jacobsen BL, Madsen B, Smidt L, Andrup L. 2002. Bacillus thuringiensis in fecal samples from greenhouse workers after exposure to B. thuringiensis-based pesticides. Appl. Environ. Microbiol. 68: 4900-4905.
    Pubmed CrossRef Pubmed Central
  23. Kyei-Poku G, Gauthier D, Pang A, van Frankenhuyzen K. 2007. Detection of Bacillus cereus virulence factors in commercial products of Bacillus thuringiensis and expression of diarrheal enterotoxins in a target insect. Can. J. Microbiol. 53: 1283-1290.
    Pubmed CrossRef
  24. Lechner M, Kupke T, Stefanovic S, Götz F. 1989. Molecular characterization and sequence of phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. Mol. Microbiol. 3: 621-626.
    Pubmed CrossRef
  25. Lereclus D, Agaisse H, Gominet M, Salamitou S, Sanchis V. 1996. Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset on the stationary phase. J. Bacteriol. 178: 2853-2860.
    CrossRef
  26. Lund T, de Buyser ML, Granum PE. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254-261.
    Pubmed CrossRef
  27. Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikarn C, Ohba M, Assavanig A, Panbangred W. 2008. Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int. J. Food Microbiol. 121: 352-356.
    Pubmed CrossRef
  28. Priest FG, Barker M, Baillie LWJ, Holmes EC, Maiden MCJ. 2004. Population structure and evolution of the Bacillus cereus group. J. Bacteriol. 186: 7959-7970.
    Pubmed CrossRef Pubmed Central
  29. Raddadi N, Belaouis A, Tamagnini I, Hansen BM, Hendriksen NB, Boudabous A, et al. 2009. Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. J. Basic Microbiol. 49: 293-303.
    Pubmed CrossRef
  30. Rasko DA, Altherr MR, Han CS, Ravel J. 2005. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 29: 303-329.
    Pubmed
  31. Rasko DA, Rosovitz MJ, Økstad OA, Fouts DE, Jiang L, Cer RZ, et al. 2007. Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereusgroup plasmids, including Bacillus anthracis pXO1. J. Bacteriol. 189: 52-64
    Pubmed CrossRef Pubmed Central
  32. Salamitou S, Ramisse F, Brehélin M, Bourguet D, Gilois N, Gominet M, et al. 2000. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146: 2825-2832.
    Pubmed CrossRef
  33. Schmidt TR, Scott EJ II, Dyer DW. 2011. Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. BMC Genomics 12: 430.
    Pubmed CrossRef Pubmed Central
  34. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
    Pubmed Pubmed Central
  35. Schoeni JL, Wong AC. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68: 636-648.
    Pubmed CrossRef
  36. Siegel JP. 2001. The mammalian safety of Bacillus thuringiensisbased insecticides. J. Invertebr. Pathol. 77: 13-21.
    Pubmed CrossRef
  37. Stenfors Arnesen LP, Fagerlund A, Granum PE. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606.
    Pubmed CrossRef
  38. Tran SL, Guillemet E, Ngo-Camus M, Clybouw C, Puhar A, Moris A, et al. 2011. Haemolysin II is a Bacillus cereus virulence factor that induces apoptosis of macrophages. Cell. Microbiol. 13: 92-108.
    Pubmed CrossRef
  39. Vilas-Boas G, Sanchis V, Lereclus D, Lemos MV, Bourguet D. 2002. Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 68: 1414-1424.
    Pubmed CrossRef Pubmed Central
  40. Wilcks A, Hansen BM, Hendriksen NB, Licht TR. 2006. Fate and effect of ingested Bacillus cereus spores and vegetative cells in the intestinal tract of human-flora-associated rats. FEMS. Immunol. Med. Microbiol. 46: 70-77.
    Pubmed CrossRef
  41. Wilcks A, Hansen BM, Hendriksen NB, Licht TR. 2006. Persistence of Bacillus thuringiensis bioinsecticides in the gut of human-flora-associated rats. FEMS. Immunol. Med. Microbiol. 48: 410-418.
    Pubmed CrossRef
  42. Zahner V, Cabral DA, Régua-Mangia AH, Rabinovitch L, Moreau G, McIntosh D. 2005. Distribution of genes encoding putative virulence factors and fragment length polymorphisms in the vrrA gene among Brazilian isolates of Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 71: 8107-8114.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd