Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2015 ; Vol.25-7: 1101~1107

AuthorFan Yang, Yanfen Gong, Gang Liu, Shengming Zhao, Juan Wang
Place of dutyShenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
TitleEnhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression
PublicationInfo J. Microbiol. Biotechnol.2015 ; Vol.25-7
AbstractThe role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and β-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of β-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.
Full-Text
Key_wordMyceliophthora thermophila, thermophilic fungi, RNA interference, cellulase, CRE1
References
  1. Antoniêto AC, Dos Santos Castro L, Silva-Rocha R, Persinoti GF, Silva RN. 2014. Defining the genome-wide role of CRE1 during carbon catabolite repression in Trichoderma reesei using RNA-Seq analysis. Fungal Genet. Biol. 73C: 93-103.
    Pubmed CrossRef
  2. Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y. 2014. Impact of regulatory variation from RNA to protein. Science DOI: 10. 1126/science.1260793.
  3. Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, et al. 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 29: 922-927.
    Pubmed CrossRef
  4. Brummelkamp TR, Bernards R, Agami R. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550-553.
    Pubmed CrossRef
  5. Collins CM, Murray PG, Denman S, Morrissey JP, Byrnes L, Teeri TT, Tuohy MG. 2007. Molecular cloning and expression analysis of two distinct beta-glucosidase genes, bg1 and aven1, with very different biological roles from the thermophilic, saprophytic fungus Talaromyces emersonii. Mycol. Res. 111: 840-849.
    Pubmed CrossRef
  6. De la Serna I, Ng D, Tyler BM. 1999. Carbon regulation of ribosomal genes in Neurospora crassa occurs by a mechanism which does not require Cre1, the homologue of the Aspergillus carbon catabolite repressor, CreA. Fungal Genet. Biol. 26: 253-269.
    Pubmed CrossRef
  7. Drysdale MR, Kolze SE, Kelly JM. 1993. The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene 130: 241-245.
    CrossRef
  8. Eveleigh DE, Mandels M, Andreotti R, Roche C. 2009. Measurement of saccharifying cellulase. Biotechnol. Biofuels 2: 21.
    Pubmed CrossRef Pubmed Central
  9. Ilmén M, Thrane C, Penttilä M. 1996. The glucose repressorgene cre1 of Trichoderma: isolation and expression of a fulllength and a truncated mutant form. Mol. Gen. Genet. 251: 451-460.
    Pubmed
  10. Jonkers W, Rep M. 2009. Mutation of CRE1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant. Mol. Microbiol. 74: 1100-1113.
    Pubmed CrossRef
  11. Kulmburg P, Mathieu M, Dowzer C, Kelly J, Felenbok B. 1993. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol. Microbiol. 7: 847-857.
    Pubmed CrossRef
  12. Kumar R, Singh S, Singh OV. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35: 377-391.
    Pubmed CrossRef
  13. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
    Pubmed CrossRef
  14. Li AN, Xie C, Zhang J, Zhang J, Li DC. 2011. Cloning, expression, and characterization of serine protease from thermophilic fungus Thermoascus aurantiacus var. levisporus. J. Microbiol. 49: 121-129.
    Pubmed CrossRef
  15. Li DC, Li AN, Papageorgiou AC. 2011. Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzyme Res. DOI: 10.4061/2011/308730.
    CrossRef
  16. Li JK, Feng M, Zhang L, Zhang ZH, Pan YH. 2008. Proteomics analysis of major royal jelly protein changes under different storage conditions. J. Proteome Res. 7: 3339-3353.
    Pubmed CrossRef
  17. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402-408.
    Pubmed CrossRef
  18. Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL. 2008. Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl. Environ. Microbiol. 74: 6554-6562.
    Pubmed CrossRef Pubmed Central
  19. Maheshwari R, Bharadwaj G, Bhat MK. 2000. Thermophilic fungi: their physiology and enzymes. Microbiol. Mol. Biol. Rev. 3: 461-488.
    CrossRef
  20. Nakari-Setala T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M. 2009. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl. Environ. Microbiol. 75: 4853-4860.
    Pubmed CrossRef Pubmed Central
  21. Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J. 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61: 155-164.
    CrossRef
  22. Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sándor E, et al. 2011. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12: 269-281.
    Pubmed CrossRef Pubmed Central
  23. Rauscher R, Würleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, et al. 2008. Secretome analysis of Phanerochaete chrysosporium s train C IRM-BRFM41 g rown o n softwood. Appl. Microbiol. Biotechnol. 80: 719-733.
    Pubmed CrossRef
  24. Ries L, Belshaw NJ, Ilmén M, Penttilä ME, Alapuranen M, Archer D B. 2 014. T he r ole of C RE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Appl. Microbiol. Biotechnol. 98: 749-762.
    Pubmed CrossRef
  25. Santangelo GM. 2006. Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70: 253-282.
    Pubmed CrossRef Pubmed Central
  26. Soni SK, Soni R. 2010. Regulation of cellulase synthesis in Chaetomium erraticum. BioResources 5: 81-98.
  27. Strauss J, Mach RL, Zeilinger S, Hartler G, Stöffler G, Wolschek M, Kubicek CP. 1995. Crel, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett. 376:103-107.
    CrossRef
  28. Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP. 1999. The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol. Microbiol. 32: 169-178.
    Pubmed CrossRef
  29. Sun J, Glass NL. 2011. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One 6: e25654.
    Pubmed CrossRef Pubmed Central
  30. Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, et al. 2008. Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol. Bioeng. 101: 515-528.
    Pubmed CrossRef
  31. Wang S, Liu G, Yu J, Tian S, Huang B, Xing M. 2013. RNA interference with carbon catabolite repression in Trichoderma koningii for enhancing cellulase production. Enzyme Microb. Technol. 53: 104-109.
    Pubmed CrossRef
  32. Wang SW, Xing M, Liu G, Yu SW, Wang J, Tian SL. 2012. Improving cellulase production in Trichoderma koningii through RNA interference on ace1 gene expression. J. Microbiol. Biotechnol. 22: 1133-1140.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd