Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2015 ; Vol.25-9: 1547~1554

AuthorByung-Hyuk Kim, Dong-Ho Kim, Jung-Woon Choi, Zion Kang, Dae-Hyun Cho, Ji-Young Kim, Hee-Mock Oh, Hee-Sik Kim
Place of dutySustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
TitlePolypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity
PublicationInfo J. Microbiol. Biotechnol.2015 ; Vol.25-9
AbstractThe potential of microalgae biofuel has not been realized because of the low productivity and high costs associated with the current cultivation systems. In this study, a new low-cost and transparent attachment material was tested for cultivation of a filamentous algal strain, Stigeoclonium sp., isolated from wastewater. Initially, the different materials tested for Stigeoclonium cultivation in untreated wastewater were nylon mesh, polyethylene mesh, polypropylene bundle (PB), polycarbonate plate, and viscose rayon. Among the materials tested, PB led to a firm attachment, high biomass (53.22 g/m2, dry cell weight), and total lipid yield (5.8 g/m2) with no perceivable change in FAME profile. The Stigeoclonium-dominated biofilm consisted of bacteria and extracellular polysaccharide, which helped in biofilm formation and for effective wastewater treatment (viz., removal efficiency of total nitrogen and total phosphorus corresponded to ~38% and ~90%, respectively). PB also demonstrated high yields under multilayered cultivation in a single reactor treating wastewater. Hence, this system has several advantages over traditional suspended and attached systems, with possibility of increasing areal productivity three times using Stigeoclonium sp. Therefore, multilayered attached growth algal cultivation systems seem to be the future cultivation model for large-scale biodiesel production and wastewater treatment.
Full-Text
Supplemental Data
Key_wordalgae;, biofilm, attachment material, multilayered culture, municipal wastewater, Stigeoclonium sp.
References
  1. APHA, AWWA, WEF. 2005. Standard methods for the examination of water and wastewater. APHA, Washington, DC, USA.
  2. Cheirsilp B, Torpee S. 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition:effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110: 510–516.
    Pubmed CrossRef
  3. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.
    Pubmed CrossRef
  4. Cho D-H, Ramanan R, Heo J, Kang Z, Kim B-H, Ahn C-Y, et al. 2015. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater. Bioresour. Technol. 191: 481-487.
    Pubmed CrossRef
  5. Cho D-H, Ramanan R, Heo J, Lee J, Kim B-H, Oh H-M, Kim H-S. 2015. Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community. Bioresour. Technol. 175: 578-585.
    Pubmed CrossRef
  6. Christenson L, Sims R. 2011. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 29: 686-702.
    Pubmed CrossRef
  7. Christenson LB, Sims RC. 2012. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol. Bioeng. 109: 1674-1684.
    Pubmed CrossRef
  8. Felsenstein J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution. 39: 783-791.
    CrossRef
  9. Fitch WM. 1971. Toward defining the course of evolution:minimum change for a specific tree topology. Syst. Zool. 20:406-416.
    CrossRef
  10. Genin SN, Stewart Aitchison J, Grant Allen D. 2014. Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content. Bioresour. Technol. 155: 136-143.
    Pubmed CrossRef
  11. Grima EM, Belarbi E-H, Fernández FGAn, Medina AR, Chisti Y. 2003. Recovery of microalgal biomass and metabolites:process options and economics. Biotechnol. Adv. 20: 491-515.
    CrossRef
  12. Guzzon A, Bohn A, Diociaiuti M, Albertano P. 2008. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res. 42: 4357-4367.
    Pubmed CrossRef
  13. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98.
  14. Hoffmann JP. 1998. Wastewater treatment with suspended and nonsuspended algae. J. Phycol. 34: 757-763.
    CrossRef
  15. Irving T, Allen DG. 2011. Species and material considerations in the formation and development of microalgal biofilms. Appl. Microbiol. Biotechnol. 92: 283-294.
    Pubmed CrossRef
  16. Jin L, La HJ, Lee HG, Lee JJ, Lee S, Ahn CY, Oh HM. 2014. Caulobacter profunda sp. nov., isolated from deep freshwater sediment. Int. J. Syst. Evol. Microbiol. 64: 762-767.
    Pubmed CrossRef
  17. John DM, Whitton BA, Brook AJ. 2002. The freshwater algal flora of the British isles: An identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge, UK.
  18. Johnson MB, Wen Z. 2010. Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol. 85: 525-534.
    Pubmed CrossRef
  19. Kang Z, Kim BH, Ramanan R, Choi JE, Yang JW, Oh HM, Kim HS. 2014. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J. Microbiol. Biotechnol. 25: 109-118.
    Pubmed CrossRef
  20. Kebede-Westhead E, Pizarro C, Mulbry WW. 2006. Treatment of swine manure effluent using freshwater algae:production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J. Appl. Phycol. 18: 41-46.
    CrossRef
  21. Kim BH, Kang Z, Ramanan R, Choi JE, Cho DH, Oh HM, Kim HS. 2014. Nutrient removal and biofuel production in high rate algal pond (HRAP) using real municipal wastewater. J. Microbiol. Biotechnol. 24: 1123-1132.
    Pubmed CrossRef
  22. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101: S75-S77.
    Pubmed CrossRef
  23. Lee J, Cho DH, Ramanan R, Kim BH, Oh HM, Kim HS. 2013. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 131: 195-201.
    Pubmed CrossRef
  24. Lee SH, Oh HM, Jo BH, Lee SA, Shin SY, Kim HS, Ahn CY. 2014. Higher biomass productivity of microalgae in an attached growth system using wastewater. J. Microbiol. Biotechnol. 24: 1566-1574.
    Pubmed CrossRef
  25. Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, et al. 2012. Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour. Technol. 127: 216-222.
    Pubmed CrossRef
  26. Markou G, Georgakakis D. 2011. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Appl. Energy. 88: 3389-3401.
    CrossRef
  27. McLean RO, Benson-Evans K. 1974. The distribution of Stigeoclonium tenue Kütz. in South Wales in relation to its use as an indicator of organic pollution. Br. Phycol. J. 9: 83-89.
    CrossRef
  28. Miao X, Wu Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97: 841-846.
    Pubmed CrossRef
  29. Mulbry W, Kondrad S, Buyer J. 2008. Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J. Appl. Phycol. 20: 1079-1085.
    CrossRef
  30. Ozkan A, Kinney K, Katz L, Berberoglu H. 2012. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour. Technol. 114:542-548.
    Pubmed CrossRef
  31. Park JBK, Craggs RJ, Shilton AN. 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 102: 35-42.
    Pubmed CrossRef
  32. Pawlik-Skowronska B. 2001. Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquat. Toxicol. 52: 241-249.
    CrossRef
  33. Pulz O, Gross W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65: 635-648.
    Pubmed CrossRef
  34. Ramanan R, Kang Z, Kim BH, Cho DH, Jin L, Oh HM, Kim H-S. 2015. Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Res. 8:140-144.
    CrossRef
  35. Ramanan R, Kim BH, Cho DH, Ko SR, Oh HM, Kim HS. 2013. Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii. FEBS Lett. 587: 370-377.
    Pubmed CrossRef
  36. Saitou N, Nei M. 1987. The neighbour-joining method; a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
    Pubmed
  37. Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, et al. 2008. Second generation biofuels: highefficiency microalgae for biodiesel production. Bioenergy Res. 1: 20-43.
    CrossRef
  38. Sheehan J, Dunahay T, Benemann J, Roessler P. 1998. A look back at the U.S. department of energy’s aquatic species program-biodiesel from algae. NREL/TP-580-24190, National Renewable Energy Laboratory, Golden, Co. USA.
  39. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, et al. 2010. An economic and technical evaluation of microalgal biofuels. Nat. Biotechnol. 28: 126-128.
    Pubmed CrossRef
  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.
    Pubmed CrossRef Pubmed Central
  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids. 24: 4876-4882.
    CrossRef
  42. Wilkie AC, Mulbry WW. 2002. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour. Technol. 84:81-91.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd