Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2015 ; Vol.25-5: 723~731

AuthorSeon-Mi Jeon, Ji Hyung Kim, Taeho Kim, Areumi Park, Ah-Ra Ko, Se-Jong Ju, Soo-Jin Heo, Chulhong Oh, Md. Abu Affan, Won-Bo Shim, Do-Hyung Kang
Place of dutyGlobal Bioresources Research Center, Korea Institute of Ocean Science and Technology, Ansan 426-744, Republic of Korea
TitleMorphological, Molecular, and Biochemical Characterization of Monounsaturated Fatty Acids-Rich Chlamydomonas sp. KIOST-1 Isolated from Korea
PublicationInfo J. Microbiol. Biotechnol.2015 ; Vol.25-5
AbstractMicroalgae hold promise as producers of sustainable biomass for the production of biofuels and other biomaterials. However, the selection of strains with efficient and robust production of desirable resources remains challenging. In this study, we isolated a green microalga from Korea and analyzed its morphological, molecular, and biochemical characteristics. Microscopic and phylogenetic analyses demonstrated that the isolate could be classified into the genus Chlamydomonas, and we designated the isolate Chlamydomonas s p. K IOST -1. Compositions of protein, lipid, and carbohydrate in the microalgal cells were estimated to be 58.8 ± 0.2%, 22.7 ± 1.2%, and 18.5 ± 1.0%, respectively. Similar to other microalgae belonging to Chlorophyceae, the dominant amino acid and monosaccharide in Chlamydomonas sp. KIOST-1 were glutamic acid and glucose. On the other hand, the proportions of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids clearly differed from other species in the genus Chlamydomonas, and monounsaturated fatty acids accounted for a large portion (41.3%) of the total fatty acids in the isolate. Based on these results, Chlamydomonas sp. KIOST-1 has advantageous characteristics for biomass production.
Full-Text
Key_wordmicroalgae, Chlamydomonas sp. KIOST-1, phylogenetic analysis, monounsaturated fatty acids, biomass, Korea
References
  1. An M, Mou S, Zhang X, Zheng Z, Ye N, Wang D, et al. 2013. Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresour. Technol. 149: 77-83.
    Pubmed CrossRef
  2. AOAC. 2006. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed. AOAC International, Gaitherburg, Maryland.
  3. Becker EW. 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25: 207-210.
    Pubmed CrossRef
  4. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.
    Pubmed CrossRef
  5. Brown MR, Jeffrey SW. 1992. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J. Exp. Mar. Biol. Ecol. 161: 91-113.
    CrossRef
  6. Buchheim MA, Lemieux C, Otis C, Gutell RR, Chapman RL, Turmel M. 1996. Phylogeny of the chlamydomonadales (Chlorophyceae): a comparison of ribosomal RNA gene sequences from the nucleus and the chloroplast. Mol. Phylogenet. Evol. 5: 391-402.
    Pubmed CrossRef
  7. Burlew JS. 1953. Algal Culture: From Laboratory to Pilot Plant. Carnegie Institution of Washington Publication, Washington, DC.
  8. Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T. 2012. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol. Bioeng. 109: 1947-1957.
    Pubmed CrossRef
  9. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.
    Pubmed CrossRef
  10. Choi SP, Nguyen MT, Sim SJ. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101: 5330-5336.
    Pubmed CrossRef
  11. Dunstan GA, Volkman JK, Jeffrey SW, Barrett SM. 1992. Biochemical composition of microalgae from green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J. Exp. Mar. Biol. Ecol. 161: 115-134.
    CrossRef
  12. Gillingham LG, Harris-Janz S, Jones PJ. 2011. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 46:209-228.
    Pubmed CrossRef
  13. Harris EH. 2009. The Chlamydomonas Sourcebook. Introduction to Chlamydomonas and its Laboratory Use, 2nd Ed. Academic Press, San Diego, California.
  14. Harun R, Danquah MK, Forde GM. 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85: 199-203.
  15. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  16. Hoham RW, Bonome TA, Martin CW, Leebens-Mack JH. 2002. A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J. Phycol. 38: 1051-1064.
    CrossRef
  17. Hong JW, Jeong J, Kim SH, Kim S, Yoon HS. 2013. Isolation of a Korean domestic microalga, Chlamydomonas reinhardtii KNUA021, and analysis of its biotechnological potential. J. Microbiol. Biotechnol. 23: 375-381.
    Pubmed CrossRef
  18. James GO, Hocart CH, Hillier W, Chen H, Kordbacheh F, Price GD, et al. 2001. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour. Technol. 102: 3343-3351.
    Pubmed CrossRef
  19. Jeffrey SW, Humphrey GF. 1975. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191-194.
  20. Knothe G. 2008. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358-1364.
    CrossRef
  21. Kothari R, Prasad R, Kumar V, Singh DP. 2013. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour. Technol. 144:499-503.
    Pubmed CrossRef
  22. Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, Etherton TD. 1999. Highmonounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 70: 1009-1015.
    Pubmed
  23. Levasseur M, Thompson P, Harrison PJ. 1993. Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29: 587-595.
    CrossRef
  24. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications. A review. Renew. Sust. Energy Rev. 14: 217-232.
    CrossRef
  25. Melis A. 2002. Green alga hydrogen production: progress, challenges and prospects. Int. J. Hydrogen Energy 27: 1217-1228.
    CrossRef
  26. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245-250.
    Pubmed CrossRef Pubmed Central
  27. Nichlos PD, Guckert JB, White DC. 1986. Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J. Microbiol. Methods 5: 49-55.
    CrossRef
  28. Pröschold T, Marin B, Schlösser UG, Melkonian M. 2001. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152: 265-300.
    Pubmed CrossRef
  29. Ringo DL. 1967. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J. Cell Biol. 33: 543-571.
    Pubmed CrossRef Pubmed Central
  30. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19: 430-436.
    Pubmed CrossRef
  31. Salama ES, Kim HC, Abou-Shanab RI, Ji MK, Oh YK, Kim SH, et al. 2013. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst. Eng. 36: 827-833.
    Pubmed CrossRef
  32. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101:87-96.
    Pubmed CrossRef
  33. Spurr AR. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31-43.
    CrossRef
  34. Stansell GR, Gray VM, Sym SD. 2012. Microalgal fatty acid composition: implications for biodiesel quality. J. Appl. Phycol. 24: 791-801.
    CrossRef
  35. Tamburic B, Zemichael FW, Maitland GC, Hellgardt K. 2011. Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Int. J. Hydrogen Energy 36: 7872-7876.
    CrossRef
  36. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 27312739.
    Pubmed CrossRef Pubmed Central
  37. Teres S, Barcelo-Coblijn G, Benet M, Alvarez R, Bressani R, Halver JE, Escriba PV. 2008. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc. Natl. Acad. Sci. USA 37: 13811-13816.
    Pubmed CrossRef Pubmed Central
  38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins D G. 1 9 9. 7T he C LUSTAL_X Windows i nterface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
    Pubmed CrossRef Pubmed Central
  39. Weers PMM, Gulati RD. 1997. Growth and reproduction of Daphnia galeata in response to changes in fatty acids, phosphorus and nitrogen in Chlamydomonas reinhardtii. Limnol. Oceanogr. 42: 1584-1589.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd