Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2015 ; Vol.25-7: 1136~1145

AuthorGangping Li, Min Yang, Kan Zhou, Lei Zhang, Lugao Tian, Shangze Lv, Yu Jin, Wei Qian, Hanhua Xiong, Rong Lin, Yu Fu, Xiaohua Hou
Place of dutyDivision of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
TitleDiversity of Duodenal and Rectal Microbiota in Biopsy Tissues and Luminal Contents in Healthy Volunteers
PublicationInfo J. Microbiol. Biotechnol.2015 ; Vol.25-7
AbstractThe diverse microbial communities that colonize distinct segments of the gastrointestinal tract are intimately related to aspects of physiology and the pathology of human health. However, most recent studies have focused on the rectal or fecal microbiota, and the microbial signature of the duodenum is poorly studied. In this study, we compared the microbiota in duodenal and rectal samples to illustrate the characteristic microbial signatures of the duodenum in healthy adults. Nine healthy volunteers donated biopsies and luminal contents from the duodenum and rectum. To determine the composition and diversity of the microbiota, 454- pyrosequencing of bacterial 16S rRNA was performed and multiple bioinformatics analyses were applied. The α-diversity and phylogenetic diversity of the microbiota in the duodenal samples were higher than those of the rectal samples. There was higher biodiversity among the microbiota isolated from rectal biopsies than feces. Proteobacteria were more highly represented in the duodenum than in the rectum, both in the biopsies and in the luminal contents from the healthy volunteers (38.7% versus 12.5%, 33.2% versus 5.0%, respectively). Acinetobacter and Prevotella were dominant in the duodenum, whereas Bacteroides and Prevotella were dominant in the rectum. Additionally, the percentage of OTUs shared in biopsy groups was far higher than in the luminal group (43.0% versus 26.8%) and a greater number of genera was shared among the biopsies than the luminal contents. Duodenal samples demonstrated greater biological diversity and possessed a unique microbial signature compared with the rectum. The mucosa-associated microbiota was more relatively conserved than luminal samples.
Full-Text
Supplemental Data
Key_wordMicrobiota, duodenum, rectum, biopsy, mucus, feces
References
  1. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. 2011. Enterotypes of the human gut microbiome. Nature 473: 174-180.
    Pubmed CrossRef Pubmed Central
  2. Baba N, Samson S, Bourdet-Sicard R, Rubio M, Sarfati M. 2008. Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of nonTr1 suppressor T cells. J. Leukoc. Biol. 84: 468-476.
    Pubmed CrossRef
  3. Bohm M, Siwiec RM, Wo JM. 2013. Diagnosis and management of small intestinal bacterial overgrowth. Nutr. Clin. Pract. 28: 289-299.
    Pubmed CrossRef
  4. Brock TD, Madigan MT. 1988. Biology of Microorganisms, pp. 42-59. 5th Ed. Prentice Hall, Englewood Cliffs, New Jersey.
  5. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, et al. 2011. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6: e25792.
    Pubmed CrossRef Pubmed Central
  6. Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard E 4th, Taylor CM, Welsh DA, Berthoud HR. 2015. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 77: 607-615.
    Pubmed CrossRef
  7. Carroll IM, Ringel-Kulka T, Siddle JP, Ringel Y. 2012. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 24: 521-530.
    Pubmed CrossRef Pubmed Central
  8. Chen L, Wang W, Zhou R, Ng SC, Li J, Huang M, et al. 2014. Characteristics of fecal and mucosa-associated microbiota in Chinese patients with inflammatory bowel disease. Medicine (Baltimore) 93: e51.
    Pubmed CrossRef Pubmed Central
  9. Cheng J, Kalliomäki M, Heilig HG, Palva A, Lähteenoja H, de Vos WM, et al. 2013. Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterol. 13: 113.
    Pubmed CrossRef Pubmed Central
  10. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. 2014. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63: 1913-1920.
    Pubmed CrossRef
  11. Dethlefsen L, McFall-Ngai M, Relman DA. 2007. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449: 811-818.
    Pubmed CrossRef
  12. Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, et al. 2011. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 11: 219.
    Pubmed CrossRef Pubmed Central
  13. El Aidy S, van den Bogert B, Kleerebezem M. 2014. The small intestine microbiota nutritional modulation and relevance for health. Curr. Opin. Biotechnol. 32C: 14-20.
  14. Gersemann M, Wehkamp J, Stange EF. 2012. Innate immune dysfunction in inflammatory bowel disease. J. Intern. Med. 271: 421-428.
    Pubmed CrossRef
  15. Gupta A, Dhiman RK, Kumari S, Rana S, Agarwal R, Duseja A, Chawla Y. 2010. Role of small intestinal bacterial overgrowth and delayed gastrointestinal transit time in cirrhotic patients with minimal hepatic encephalopathy. J. Hepatol. 53: 849-855.
    Pubmed CrossRef
  16. Jiménez E, Sánchez B, Farina A, Margolles A, Rodríguez JM. 2014. Characterization of the bile and gall bladder microbiota of healthy pigs. Microbiologyopen 3: 937-949.
    Pubmed CrossRef Pubmed Central
  17. Kalliomäki M, Satokari R, Lähteenoja H, Vähämiko S, Grönlund J, Routi T, Salminen S. 2012. Expression of microbiota, Toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J. Pediatr. Gastroenterol. Nutr. 54: 727-732.
    Pubmed CrossRef
  18. Karwautz C, Lueders T. 2014. Impact of hydraulic well restoration on native bacterial communities in drinking water wells. Microbes Environ. 29: 363-369.
    Pubmed CrossRef Pubmed Central
  19. Knights D , Ward T L, M c Kinlay C E, M iller H , Gonzalez A , McDonald D, Knight R. 2014. Rethinking “enterotypes”. Cell Host Microbe 16: 433-437.
    Pubmed CrossRef
  20. Kunisawa T. 2011. Inference of the phylogenetic position of the phylum Deferribacteres from gene order comparison. Antonie Van Leeuwenhoek 99: 417-422.
    Pubmed CrossRef
  21. Lim MY, Rho M, Song YM, Lee K, Sung J, Ko G. 2014. Stability of gut enterotypes in korean monozygotic twins and their association with biomarkers and diet. Sci. Rep. 4: 7348.
    Pubmed CrossRef Pubmed Central
  22. Madrid AM, Poniachik J, Quera R, Defilippi C. 2011. Small intestinal clustered contractions and bacterial overgrowth: a frequent finding in obese patients. Dig. Dis. Sci. 56: 155-160.
    Pubmed CrossRef
  23. Nam YD, Jung MJ, Roh SW, Kim MS, Bae JW. 2011. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One 6: e22109.
    Pubmed CrossRef Pubmed Central
  24. Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM. 2014. Role of the microbiome in energy regulation and metabolism. Gastroenterology 146: 1525-1533.
    Pubmed CrossRef
  25. Peleg AY, de Breij A, Adams MD, Cerqueira GM, Mocali S, Galardini M, et al. 2012. The success of Acinetobacter spec ies;genetic, metabolic and virulence attributes. PLoS One 7: e46984.26. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. 2014. Alterations of the human gut microbiome in liver cirrhosis. Nature 513: 59-64.
    Pubmed CrossRef
  26. Quigley EM. 2014. Small intestinal bacterial overgrowth:what it is and what it is not. Curr. Opin. Gastroenterol. 30: 141-146.
    Pubmed CrossRef
  27. Rønnestad I, Akiba Y, Kaji I, Kaunitz JD. 2014. Duodenal luminal nutrient sensing. Curr. Opin. Pharmacol. 19C: 67-75.
    Pubmed CrossRef
  28. Rubio-Tapia A, Barton SH, Rosenblatt JE, Murray JA. 2009. Prevalence of small intestine bacterial overgrowth diagnosed by quantitative culture of intestinal aspirate in celiac disease. J. Clin. Gastroenterol. 43: 157-161.
    Pubmed CrossRef Pubmed Central
  29. Sánchez E1, Donat E, Ribes-Koninckx C, Fernández-Murga ML, Sanz Y. 2013. Duodenal-mucosal bacteria associated with celiac disease in children. Appl. Environ. Microbiol. 79: 5472-5479.
    Pubmed CrossRef Pubmed Central
  30. Schippa S, Iebba V, Barbato M, Di Nardo G, Totino V, Checchi MP, et al. 2010. A distinctive ‘microbial signature’ in celiac pediatric patients. BMC Microbiol. 10: 175.
    Pubmed CrossRef Pubmed Central
  31. Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et al. 2011. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6: e16393.
    Pubmed CrossRef Pubmed Central
  32. Stearns JC, Lynch MD, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG, et al. 2011. Bacterial biogeography of the human digestive tract. Sci. Rep. 1: 170.
    Pubmed CrossRef Pubmed Central
  33. Stellato G, La Storia A, Cirillo T, Ercolini D. 2015. Bacterial biogeographical patterns in a cooking center for hospital foodservice. Int. J. Food Microbiol. 193: 99-108.
    Pubmed CrossRef
  34. Taverniti V, Guglielmetti S. 2014. Methodological issues in the study of intestinal microbiota in irritable bowel syndrome. World J. Gastroenterol. 20: 8821-8836.
    Pubmed Pubmed Central
  35. Vital M, Howe AC, Tiedje JM. 2014. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. mBio 5: e00889.
    Pubmed CrossRef Pubmed Central
  36. Wacklin P, Kaukinen K, Tuovinen E, Collin P, Lindfors K, Partanen J, et al. 2013. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestations of the disease. Inflamm. Bowel Dis. 19: 934-941.
    Pubmed CrossRef
  37. Walker MM, Talley NJ. 2014. Review article: bacteria and pathogenesis of disease in the upper gastrointestinal tract beyond the era of Helicobacter pylori. Aliment. Pharmacol. Ther. 39: 767-779.
    Pubmed CrossRef
  38. Wang ZK, Yang YS. 2013. Upper gastrointestinal microbiota and digestive diseases. World J. Gastroenterol. 19: 1541-1550.
    Pubmed CrossRef Pubmed Central
  39. Wrighton KC, Castelle CJ, Wilkins MJ, Hug LA, Sharon I, Thomas BC, et al. 2014. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J. 8: 1452-1463.
    Pubmed CrossRef Pubmed Central
  40. Zhang Z, Geng J, Tang X, Fan H, Xu J, Wen X, et al. 2014. Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME J. 8: 881-893.
    Pubmed CrossRef Pubmed Central
  41. Zhou M, Rong R, Munro D, Zhu C, Gao X, Zhang Q, Dong Q. 2013. Investigation of the effect of type 2 diabetes mellitus on subgingival plaque microbiota by high-throughput 16S rDNA pyrosequencing. PLoS One 8: e61516.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd