Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2015 ; Vol.25-7: 1129~1135

AuthorNaresh Niranjan Dhanasekar, Ganga Ravindran Rahul, Kannan Badri Narayanan, Gurusamy Raman, Natarajan Sakthivel
Place of dutyDepartment of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605 014, India
TitleGreen Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.
PublicationInfo J. Microbiol. Biotechnol.2015 ; Vol.25-7
AbstractThe synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au3+ to Au0. TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7–13 and 15–18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles.
Full-Text
Key_wordAlternaria sp., filamentous fungus, gold nanoparticles, surface plasmon resonance, electron microscopy
References
  1. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. 2003. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermonospora sp. Langmuir 19: 3550-3553.
    CrossRef
  2. Bhainsa KC, D’Souza SF. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B Biointerf. 47: 160-164.
    Pubmed CrossRef
  3. Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, et al. 2010. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc. 132: 4678-4684.
    Pubmed CrossRef Pubmed Central
  4. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M. 2011. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf. B Biointerf. 83: 42-48.
    Pubmed CrossRef
  5. Corma A, Garcia H. 2008. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37: 2096-2126.
    Pubmed CrossRef
  6. Das SK, Liang J, Schmidt M, Laffir F, Marsili E. 2012. Biomineralization mechanism of gold by zygomycete fungi Rhizopus oryzae. ACS Nano 6: 6165-6173.
    Pubmed CrossRef
  7. El-Brolossy TA, Abdallah T, Mohamed MB, Abdallah S, Easawi K, Negm S, Talaat H. 2008. Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique. Eur. Phys. J. Special Topics 153: 361-364.
    CrossRef
  8. Eustis S, El-Sayed MA. 2006. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35: 209-217.
    Pubmed CrossRef
  9. Fayaz AM, Girilal M, Rahman M, Venkatesan R, Kalaichelvan PT. 2011. Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Proc. Biochem. 46: 1958-1962.
    CrossRef
  10. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M. 2001. Pepsin-gold colloid conjugates:preparation, characterization, and enzymatic activity. Langmuir 17: 1674-1679.
    CrossRef
  11. He S, Zhang Y, Guo Z, Gu N. 2008. Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulate. Biotechnol. Prog. 24: 476-480.
    Pubmed CrossRef
  12. He Y, Yuan J, Su F, Xing X, Shi G. 2006. Bacillus subtilis assisted assembly of gold nanoparticles into long conductive nodous ribbons. J. Phys. Chem. B 110: 17813-17818.
    Pubmed CrossRef
  13. Jha AK, Prasad K, Prasad K. 2009. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem. Eng. J. 43: 303-306.
    CrossRef
  14. Kar PK, Murmu S, Saha S, Tandon V, Acharya K. 2014. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9: e84693.
    Pubmed CrossRef Pubmed Central
  15. Kasten BB, Liu T, Nedrow-Byers JR, Benny PD, Berkman CE. 2013. Targeting prostate cancer cells with PSMA inhibitor-guided gold nanoparticles. Bioinorg. Med. Chem. Lett. 23: 565-568.
    Pubmed CrossRef Pubmed Central
  16. Kitching M, Ramani M, Marsili E. 2014. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microbial Biotechnol. DOI: 10.1111/1751-7915.12151.
    CrossRef
  17. Kumar S, Gandhi KS, Kumar R. 2007. Modeling of formation of gold nanoparticles by citrate method. Ind. Eng. Chem. Res. 46: 3128-3136.
    CrossRef
  18. Milligan AJ, Morel FMM. 2002. A proton buffering role for silica in diatoms. Science 297: 1848-1850.
    Pubmed CrossRef
  19. Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, et al. 2011. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl. Microbiol. Biotechnol. 92: 617-630.
    Pubmed CrossRef
  20. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M. 2002. Extracellular synthesis of gold nanoparticles using the fungus Fusarium oxysporum. Chembiochem 5: 461-463.
    CrossRef
  21. Mulvaney P. 1996. Surface plasmon spectroscopy of nanosized metal nanoparticles. Langmuir 12: 788-800.
    CrossRef
  22. Narayanan KB, Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Coll. Interf. Sci. 156: 1-13.
    Pubmed CrossRef
  23. Narayanan KB, S akthiv el N. 2011. Facile g reen s ynthesis o f gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids Surf. B Physicochem. Eng. Aspects 380: 156-161.
    CrossRef
  24. Peng HP, Liang RP, Zhang L, Qiu JD. 2013. Facile preparation of novel core-shell enzyme Au-polydopamineFe3O4 magnetic bionanoparticles for glucose sensor. Biosens. Bioelectron. 42: 293-299.
    Pubmed CrossRef
  25. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R. 2008. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 8: 4593-4596.
    Pubmed CrossRef Pubmed Central
  26. Riddin TL, Gericke M, Whiteley CG. 2006. Analysis of theinter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17: 3482-3489.
    Pubmed CrossRef
  27. Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K. 2010. Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig. J. Nanomater. Biostruct. 5: 887-895.
  28. Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K. 2012. Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst. Eng. 35: 637-643.
    Pubmed CrossRef
  29. Song JY, Jang HK, Kim BS. 2009. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Proc. Biochem. 44: 1133-1138.
    CrossRef
  30. Sosa IO, Noguez C, Barrera RG. 2003. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 107: 6269-6275.
    CrossRef
  31. Szunerits S, Boukherroub R. 2006. Electrochemical investigation of gold/silica thin film interfaces for electrochemical surface plasmon resonance studies. Electrochem. Commun. 8: 439-444.
    CrossRef
  32. Thakker JN, Dalwadi P, Dhandhukia C. 2013. Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnol. 2013: 515091.
    Pubmed CrossRef Pubmed Central
  33. Verma VC, Singh SK, Solanki R, Prakash S. 2011. Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res. Lett. 6: 16-22.
    Pubmed CrossRef
  34. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. 2007. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 61: 1413-1418.
    CrossRef
  35. Vijayakumar PS, Prasad BLV. 2009. Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents. Langmuir 25:11741-11747.
    Pubmed CrossRef
  36. Xu F, Zhang Q, Gao Z. 2013. Simple one-step synthesis of gold nanoparticles with controlled size using cationic Gemini surfactants as ligands: effect of the variations in concentrations and tail lengths. Colloids Surf. A Physicochem. Eng. Aspects 417: 201-210.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd