Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2014 ; Vol.24-12: 1622~1628

AuthorJuyi Park, Soon-Kwang Hong, Yong Keun Chang
Place of dutyDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
TitleProduction of DagA, a β-Agarase, by Streptomyces lividans in Glucose Medium or Mixed-Sugar Medium Simulating Microalgae Hydrolysate
PublicationInfo J. Microbiol. Biotechnol.2014 ; Vol.24-12
AbstractDagA, a β-agarase, was produced by cultivating a recombinant Streptomyces lividans in a glucose medium or a mixed-sugar medium simulating microalgae hydrolysate. The optimum composition of the glucose medium was identified as 25 g/l glucose, 10 g/l yeast extract, and 5 g/l MgCl2·6H2O. With this, a DagA activity of 7.26 U/ml could be obtained. When a mixedsugar medium containing 25 g/l of sugars was used, a DagA activity of 4.81 U/ml was obtained with very low substrate utilization efficiency owing to the catabolic repression of glucose against the other sugars. When glucose and galactose were removed from the medium, an unexpectedly high DagA activity of about 8.7 U/ml was obtained, even though a smaller amount of sugars was used. It is recommended for better substrate utilization and process economics that glucose and galactose be eliminated from the medium, by being consumed by some other useful applications, before the production of DagA.
Full-Text
Key_wordDagA, Streptomyces lividans, mixed-sugar medium, microalgae hydrolysate
References
  1. Araki C. 1956. Structure of the agarose constituent of agaragar. Bull. Chem. Soc. Jpn. 29: 543-544.
    CrossRef
  2. Bandi S, Kim YJ, Sa SO, Chang YK. 2005. Statistical approach to development of culture medium for ansamitocin P-3 production with Actinosynnema pretiosum ATCC 31565. J. Microbiol. Biotechnol. 15: 930-937.
  3. Bibb MJ, Jones GH, Joseph R, Buttner MJ, Ward JM. 1987. The agarase gene (dagA) of Streptomyces coelicolor A3(2):affinity purification and characterization of the cloned geneproduct. J. Gen. Microbiol. 133: 2089-2096.
    Pubmed
  4. Box GEP, Wilson KB. 1951. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Series B Stat. Methodol. 13: 1-45.
  5. Brown MR. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exper. Marine Biol. Ecol. 145: 79-99.
    CrossRef
  6. Buttner MJ, Fearnley IM, Bibb MJ. 1987. The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol. Gen. Genet. 209: 101-109.
    Pubmed CrossRef
  7. Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930.
    Pubmed CrossRef
  8. Cochrane VW, Conn JE. 1947. The growth and pigmentation of Actinomyces coelicolor as affected by cultural conditions. J. Bacteriol. 54: 213-218.
    Pubmed
  9. Duckwort M, Yaphe W. 1971. Structure of agar. 1. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16:189.
  10. Fu XT, Lin H, Kim SM. 2009. Optimization of medium composition and culture conditions for agarase production by Agarivorans albus YKW-34. Proc. Biochem. 44: 1158-1163.
    CrossRef
  11. Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62: 334.
    Pubmed
  12. Giordano A, Andreotti G, Tramice A, Dr AT. 2006. Marine glycosyl hydrolases in the hydrolysis and synthesis of oligosaccharides. Biotechnol. J. 1: 511-530.
    Pubmed CrossRef
  13. Ha JC, Kim GT, Kim SK, Oh TK, Yu JH, Kong IS. 1997. Beta-agarase from Pseudomonas s p. W7: p urification of t he recombinant enzyme from Escherichia coli and the effects of salt on its activity. Biotechnol. Appl. Biochem. 26: 1-6.
    Pubmed
  14. Harun R, Danquah MK, Forde GM. 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85: 199-203.
  15. Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS. 2013. Bioethanol production, using carbohydraterich microalgae biomass as feedstock. Bioresour. Technol. 135:191-198.
    Pubmed CrossRef
  16. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich.
  17. Kim JH, Huh IY, Hong SK, Kang HA, Chang YK. 2014. Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae K L17. Bioprocess Biosyst. Eng. 37:1871-1878.
    Pubmed CrossRef
  18. Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163.
    Pubmed CrossRef
  19. Lee JS, Chi WJ, Hong SK, Yang JW, Chang YK. 2013. Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans. Appl. Microbiol. Biotechnol. 97: 6089-6097.
    Pubmed CrossRef
  20. Parro V, Mellado RP. 1993. Heterologous recognition in vivo of promoter sequences from the Streptomyces coelicolor dagA gene. FEMS Microbiol. Lett. 106: 347-356.
    Pubmed CrossRef
  21. Plackett RL, Burman JP. 1946. The design of optimum multifactorial experiments. Biometrika 33: 305-325.
    CrossRef
  22. Singh J, Cu S. 2010. Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev. 14: 25962610.
    CrossRef
  23. Stulke J, Hillen W. 1999. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2: 195-201.
    CrossRef
  24. Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type beta-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92: 749-759.
    Pubmed CrossRef
  25. Wang YH, Fang XL, An FQ, Wang GH, Zhang X. 2011. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microb. Cell Fact. 10: 98.
    Pubmed CrossRef
  26. Wu SC, Wen TN, Pan CL. 2005. Algal-oligosaccharide-lysates prepared by two bacterial agarases stepwise hydrolyzed and their anti-oxidative properties. Fish. Sci. 71: 1149-1159.
    CrossRef
  27. Zhou JY, Yu XJ, Ding C, Wang ZP, Zhou QQ, Pao H, Cai WM. 2011. Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett-Burman design and response surface methodology. J. Environ. Sci. China 23: 22-30.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd