Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2014 ; Vol.24-8: 1051~1058

AuthorHangeun Kim, Bong Jun Jung, Jihye Jeong, Honam Chun, Dae Kyun Chung
Place of dutySchool of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701, Republic of Korea,RNA Inc., College of Life Science, Kyung Hee University, Yongin 449-701, Republic of Korea
TitleLipoteichoic Acid from Lactobacillus plantarum Inhibits the Expression of Platelet-Activating Factor Receptor Induced by Staphylococcus aureus Lipoteichoic Acid or Escherichia coli Lipopolysaccharide in Human Monocyte-Like Cells
PublicationInfo J. Microbiol. Biotechnol.2014 ; Vol.24-8
AbstractPlatelet-activating factor receptor (PAFR) plays an important role in bacterial infection and inflammation. We examined the effect of the bacterial cell wall components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) from Lactobacillus plantarum (pLTA) and Staphylococcus aureus (aLTA) on PAFR expression in THP-1, a monocyte-like cell line. LPS and aLTA, but not pLTA, significantly increased PAFR expression, whereas priming with pLTA inhibited LPSmediated or aLTA-mediated PAFR expression. Expression of Toll-like receptor (TLR) 2 and 4, and CD14 increased with LPS and aLTA treatments, but was inhibited by pLTA pretreatment. Neutralizing antibodies against TLR2, TLR4, and CD14 showed that these receptors were important in LPS-mediated or aLTA-mediated PAFR expression. PAFR expression is mainly regulated by the nuclear factor kappa B signaling pathway. Blocking PAF binding to PAFR using a PAFR inhibitor indicated that LPS-mediated or aLTA-mediated PAF expression affected TNF-α production. In the mouse small intestine, pLTA inhibited PAFR, TLR2, and TLR4 expression that was induced by heat-labile toxin. Our data suggested that pLTA has an anti-inflammatory effect by inhibiting the expression of PAFR that was induced by pathogenic ligands.
Full-Text
Key_wordLactobacillus plantarum, Staphylococcus aureus, lipoteichoic acid, Platelet-activating factor, Toll-like receptor, Monocyte-like cells
References
  1. Behr T, Fischer W, Peter-Katalinic J, Egge H. 1992. The structure of pneumococcal lipoteichoic acid: improved preparation, chemical and mass spectrometric studies. Eur. J. Biochem. 207: 1063-1075.
    CrossRef
  2. Bhakdi S, Klonisch T, Nuber P, Fischer W. 1991. Stimulation of monokine production by lipoteichoic acids. Infect. Immunol. 59: 4614-4620.
  3. Castor MG, Rezende BM, Resende CB, Bernardes PT, Cisalpino D, Vieira AT, et al. 2012. Platelet-activating factor receptor plays a role in the pathogenesis of graft-versushost disease by regulating leukocyte recruitment, tissue injury, and lethality. J. Leukoc. Biol. 91: 629-639.
    CrossRef
  4. Dagenais P, Thivierge M, Stankova J, Rola-Pleszczynski M. 1997. Modulation of platelet-activating factor receptor (PAFR) gene expression via NF kappa B in MonoMac-1 cells. Inflamm. Res. 46 (Suppl 2): S161-S162.
    CrossRef
  5. Deininger S, Stadelmaier A, von Aulock S, Morath S, Schmidt RR, Hartung T. 2003. Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J. Immunol. 170: 4134-4138.
    CrossRef
  6. Fischer W, Mannsfeld T, Hagen G. 1990. On the basic structure of poly (glycerophosphate) lipoteichoic acids. Biochem. Cell Biol. 68: 33-43.
    CrossRef
  7. Fischer W. 1998. Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29: 233-302.
    CrossRef
  8. Frostegård J, Huang YH, Rönnelid J, Schäfer-Elinder L. 1997. Platelet-activating factor and oxidized LDL induce immune activation by a common mechanism. Arterioscler. Thromb. Vasc. Biol. 17: 963-968.
    CrossRef
  9. Georgieva RN, IIiev IN, Chipeva VA, Dimitonova SP, Samelis J, Danova ST. 2008. Identification and in vitro characterization of Lactobacillus plantarum strains from artisanal Bulgarian white brined cheeses. J. Basic Microbiol. 48: 234-244.
    CrossRef
  10. Ginsburg I. 2002. Role of lipoteichoic acid in infection and inflammation. Lancet Infect. 2: 171-179.
    CrossRef
  11. Greengerg JW, Fischer W, Joiner KA. 1996. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect. Immunol. 64: 3318-3325.
  12. Grigg J. 2012. The platelet activating factor receptor: a new anti-infective target in respiratory disease? Thorax 67: 840841.
    CrossRef
  13. Han SH, Kim JH, Seo HS, Martin MH, Chung GH, Michalek SM, Nahm MH. 2006. Lipoteichoic acid-induced nitric oxide production depends on the activation of platelet-activating factor receptor and Jak2. J. Immunol. 176: 573-579.
    CrossRef
  14. Han SH, Kim JK, Martin M, Michalek SM, Nahm MH. 2003. Pneumococcal lipoteichoic acid (LTA) is not as potent as Staphylococcal LTA in stimulating Toll-like receptor 2. Infect. Immunol. 71: 5541-5548.
    CrossRef
  15. Hosoki K, Nakamura A, Nagao M, Hiraguchi Y, Tanida H, Tokuda R, et al. 2012. Staphylococcus aureus directly activates eosinophils via platelet-activating factor receptor. J. Leukoc. Biol. 92: 333-341.
    CrossRef
  16. Hourton D, Delerive P, Stankova J, Staels B, Chapman MJ, Ninio E. 2001. Oxidized low-density lipoprotein and peroxisome-proliferator-activated receptor alpha down-regulate platelet-activating-factor receptor expression in human macrophages. Biochem. J. 354: 225-232.
    CrossRef
  17. Iovino F, Brouwer MC, van de Beek D, Molema G, Bijlsma JJ. 2013. Signalling or binding: the role of the plateletactivating factor receptor in invasive pneumococcal disease. Cell Microbiol. 15: 870-881.
    CrossRef
  18. Jang KS, Baik JE, Han SH, Chung DK, Kim BG. 2011. Multispectrometric analyses of lipoteichoic acids isolated from Lactobacillus plantarum. Biochem. Biophys. Res. Commun. 407:823-830.
    CrossRef
  19. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, et al. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130: 1071-1082.
    CrossRef
  20. Kim HG, Gim MG, Kim JY, Hwang HJ, Ham MS, Lee JM, et al. 2007. Lipoteichoic acid from Lactobacillus plantarum elicits both the production of interleukin-23p19 and suppression of pathogen-mediated interleukin-10 in THP-1 cells. FEMS Immunol. Med. Microbiol. 49: 205-214.
    CrossRef
  21. Kim HG, Kim NR, Gim MG, Lee JM, Lee SY, Ko MY, et al. 2008. Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-alpha production in THP-1 cells and endotoxin shock in mice. J. Immunol. 180:2553-2561.
    CrossRef
  22. Kim HG, Lee SY, Kim NR, Ko MY, Lee JM, Yi TH, et al. 2008. Inhibitory effects of Lactobacillus plantarum lipoteichoic acid (LTA) on Staphylococcus aureus LTA-induced tumor necrosis factor-alpha production. J. Microbiol. Biotechnol. 18:1191-1196.
  23. Knapp S, von Aulock S, Leendertse M, Haslinger I, Draing C, Golenbock DT, van der Poll T. 2008. Lipoteichoic acidinduced lung inflammation depends on TLR2 and the concerted action of TLR4 and the platelet-activating factor receptor. J. Immunol. 180: 3478-3484.
    CrossRef
  24. Koltai M, Hosford D, Guinot P, Esanu A, Braquet P. 1991. Platelet activating factor (PAF). A review of its effects, antagonists and possible future clinical implications (Part I). Drugs 42: 9-29.
    CrossRef
  25. Lacerda-Queiroz N, Rachid MA, Teixeira MM, Teixeira AL. 2013. The role of platelet-activating factor receptor (PAFR) in lung pathology during experimental malaria. Int. J. Parasitol. 43: 11-15.
    CrossRef
  26. Lacerda-Queiroz N, Rodrigues DH, Vilela MC, Rachid MA, Soriani FM, Sousa LP, et al. 2012. Platelet-activating factor receptor is essential for the development of experimental cerebral malaria. Am. J. Pathol. 180: 246-255.
    CrossRef
  27. Melnikova VO, Villares GJ, Bar-Eli M. 2008. Emerging roles of PAR-1 and PAFR in melanoma metastasis. Cancer Microenviron. 1: 103-111.
    CrossRef
  28. Mutoh H, Kume K, Sato S, Kato S, Shimizu T. 1994. Positive and negative regulations of human platelet-activating factor receptor transcript 2 (tissue-type) by estrogen and TGF-beta 1. Biochem. Biophys. Res. Commun. 205: 1130-1136.
    CrossRef
  29. Schroder NWJ, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, et al. 2003. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharidebinding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278: 15587-15594.
    CrossRef
  30. Seo HS, Michalek SM, Nahm MH. 2008. Lipoteichoic acid is important in innate immune responses to gram-positive bacteria. Infect. Immunol. 76: 206-213.
    CrossRef
  31. Shimizu T, Mutoh H, Kato S. 1996. Platelet-activating factor receptor. Gene structure and tissue-specific regulation. Adv. Exp. Med. Biol. 416: 79-84.
    CrossRef
  32. Takeuchi O, Hoshino K, Akira S. 2000. Cutting edge: TLR2deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165: 5392-5396.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd