Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2014 ; Vol.24-4: 507~521

AuthorSeonghyeon Eom, Youngjin Park, Hyeonghwan Kim, Yonggyun Kim
Place of dutyDepartment of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
TitleDevelopment of a High Efficient “Dual Bt-Plus” Insecticide Using a Primary Form of an Entomopathogenic Bacterium, Xenorhabdus nematophila
PublicationInfo J. Microbiol. Biotechnol.2014 ; Vol.24-4
AbstractA phase variation has been reported in an entomopathogenic bacterium, Xenorhabdus nematophila. Compared with a wild-type primary form, a secondary form usually loses several physiological and biochemical characters. This study showed that the phase variation of X. nematophila caused a significant alteration in its immunosuppressive activity and subsequent entomopathogenicity. A secondary form of X. nematophila was detected in laboratory colonies and exhibited significant differences in dye absorption and entomopathogenicity. In addition, the secondary form was different in its production of eicosanoid-biosynthesis inhibitors (EBIs) compared with the primary form of X. nematophila. Production of oxindole and phydroxypropionic acid was significantly reduced in the culture broth of the secondary form of X. nematophila. The reduced EBI production resulted in significant suppression in the inhibitory effects on cellular nodule formation and phenoloxidase activity. Culture broth of the primary form of X. nematophila enhanced the pathogenicity of Bacillus thuringiensis ( Bt) significantly more than the culture broth of the secondary form. Furthermore, this study developed a highly efficient “Dual Bt-Plus” to control both lepidopteran insect pests Plutella xylostella and Spodoptera exigua, by mixing two effective Bt strains along with the addition of potent bacterial metabolites or 100-fold concentrated X. nematophila culture broth.
Full-Text
Key_wordInsecticide, immune, benzylideneacetone, oxindole, Bacillus thuringiensis, Xenorhabdus nematophila
References
  1. Akhurst RJ. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309.
  2. Arenas I, Bravo A, Soberón M, Gómez I. 2010. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J. Biol. Chem. 285: 12497-12503.
    CrossRef
  3. Beckage NE. 2010. Insect Immunology. Academic Press, NY.
  4. BenFarhat D, Dammak M, Khedher SB, Mahfoudh S, Kammoun S, Tounsi S. 2013. Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki mixed with Xenorhabdus nematophila. J. Invertebr. Pathol. 114: 71-75.
    CrossRef
  5. Boemare NE, Akhurst RJ. 1988. Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). J. Gen. Microbiol. 134: 751-761.
  6. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 71: 248254.
  7. Brehelin MA, Cherqui L, Drif L, Luciani L, Akhurst RJ, Boemare NE. 1993. Ultrastructure study of surface components of Xenorhabdus sp. in different cell phase and culture conditions. J. Invertebr. Pathol. 61: 188-191.
    CrossRef
  8. Broderick NA, Raffa KF, Handelsman J. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103: 15196-15199.
    CrossRef
  9. Cowles KN, Cowles CE, Richards GR, Martens EC, Goodrich-Blair H. 2007. The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila. Cell. Microbiol. 9: 13111323.
    CrossRef
  10. Dunphy GB, Webster JM. 1988. Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella. Int. J. Parasitol. 30: 883-889.
  11. Dunphy GB, Webster JM. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. Invertebr. Pathol. 58: 40-51.
    CrossRef
  12. Ehlers RU, Stoessel S, Wyss U. 1990. The influence of phase variants of Xenorhabdus spp. and Escherichia coli (Enterobacteriaceae) on the propagation of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis. Rev. Nematol. 13: 417424.
  13. Ferré J, Real MD, van Rie J, Jansens S, Peferoen M. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88:5119-5123.
    CrossRef
  14. Forst S, Clarke D. 2002. Bacteria-nematode symbioses, pp. 57-77. In Gaugler R (ed.). Entomopathogenic Nematology. CABI Publishing, Wallingford.
    CrossRef
  15. Forst S, Dowds B, Boemare N, Stackebrandt E. 1997. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51: 47-72.
    CrossRef
  16. Forst S, Tabatabai N. 1997. Role of the histidine kinase, EnvZ, in the production of outer membrane proteins in the symbiotic-pathogenic bacterium, Xenorhabdus nematophilus. Appl. Environ. Microbiol. 63: 962-968.
  17. Givaudan A, Baghdiguian S, Lanois A, Boemare N. 1995. Swarming and swimming changes concomitant with phase variation in Xenorhabdus nematophilus. Appl. Environ. Microbiol. 61: 1408-1413.
  18. Goh HG, Lee SG, Lee BP, Choi KM, Kim JH. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29: 180-183.
  19. Gómez I, Sánchez J, Miranda R, Bravo A, Soberón M. 2002. Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett. 513: 242-246.
    CrossRef
  20. Heckel DG, Gahan LJ, Baxter SW, Zhao JZ, Shelton AM, Gould F, et al. 2007. The diversity of Bt resistance genes in species of Lepidoptera. J. Invertebr. Pathol. 95: 192-197.
    CrossRef
  21. Hernandez-Martinez P, Navarro-Cerrillo G, Caccia S, de Maagd RA, Moar WJ, Ferré J, et al. 2010. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. PLoS ONE 17: e12795.
    CrossRef
  22. Haine ER, Moret Y, Siva-Jothy MT, Rolff J. 2008. Antimicrobial defense and persistent infection in insects. Science 322: 12571259.
    CrossRef
  23. Humason GL. 1972. Animal Tissue Techniques, 3rd Ed. W.H. Freeman and Company, San Francisco, CA.
  24. Ji D, Yi Y, Kang GH, Choi YH, Kim P, Baek NI, et al. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248.
    CrossRef
  25. Ji D, Yi Y, Kim Y. 2004. 16S rDNA sequence and biochemical characters of a Korean isolate of Xenorhabdus nematophila. J. Asia Pac. Entomol. 7: 105-111.
    CrossRef
  26. Jung C, Kim Y. 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata subsp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35: 1584-1589.
    CrossRef
  27. Jung C, Kim Y. 2006. Potentiating effect of Bacillus thuringiensis ssp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth, Plutella xylostella. J. Econ. Entomol. 100: 246-250.
    CrossRef
  28. Kaya HK, Gaugler R. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206.
    CrossRef
  29. Kim J, Kim Y. 2011. Three metabolites from an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit larval development of Spodoptera exigua (Lepidoptera: Noctuidae) by inhibiting a digestive enzyme, phospholipase A2. Insect Sci. 18: 282-288.
    CrossRef
  30. Kim K, Park Y, Kim Y, Lee Y. 2001. Study on the inoculation augmentation of Paecilomyces japonicus to the silkworm, Bombyx mori, using dexamethasone. Kor. J. Appl. Entomol. 40: 51-58.
  31. Kim Y , Ji D , Cho S, P ark Y. 2 005. T wo g roups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Pathol. 89: 258-264.
    CrossRef
  32. Knowles BH, Ellar DJ. 1987. Colloid-osmotic lysis is a general feature of the mechanism of action on Bacillus thuringiensis delta-endotoxins with different insect specificity. Biochim. Biophys. Acta 924: 509-518.
    CrossRef
  33. Koppenhöfer AM, Grewal PS, Fuzy EM. 2007. Differences in penetration routes and establishment rates of four entomopathogenic nematode species into four white grub species. J. Invertebr. Pathol. 94: 184-195.
    CrossRef
  34. Krieg NR, Hort JG. 1984. Bergey’s Manual of Systematic Bacteriology, pp. 506-512. Vol. 1. Williams and Wilkins, Baltimore.
  35. Lavine MD, Strand MR. 2002. Insect hemocytes and their role in cellular immune responses. Insect Biochem. Mol. Biol. 32: 1237-1242.
    CrossRef
  36. Lee MK, Curtiss A, Alcantara E, Dean DH. 1996. Synergistic effect of the Bacillus thuringiensis toxins Cry1Aa and Cry1Ac on the gypsy moth, Lymantria dispar. Appl. Environ. Microbiol. 62: 583-586.
  37. Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25: 697-743.
    CrossRef
  38. Loeb MJ, Martin PAW, Hakim RS, Goto S, Takeda M. 2001. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J. Insect Physiol. 47: 599-606.
    CrossRef
  39. Luo K, Banks D, Adang MJ. 1999. Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry1 δendotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl. Environ. Microbiol. 65:457-464.
  40. Ma G, Roberts H, Sarjan M, Featherstone N, Lahnstein J, Akhurst R, et al. 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant, Helicoverpa armigera larvae? Insect Biochem. Mol. Biol. 35: 729-739.
    CrossRef
  41. Milne R, Wright T, Kaplan H, Dean D. 1998. Spruce budworm elastase precipitates Bacillus thuringiensis deltaendotoxin by specifically recognizing the C-terminal region. Insect Biochem. Mol. Biol. 28: 1013-1023.
    CrossRef
  42. Pacheco S, Gómez I, Arenas I, Saab-Rincon G, RodriguesAlmazan C, Gill SS, et al. 2009. Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “ping-pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J. Biol. Chem. 284: 32750-32757.
    CrossRef
  43. Pardo-Lopez L, Soberon M, Bravo A. 2013. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. 37: 3-22.
    CrossRef
  44. Park Y, Kim Y. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476.
    CrossRef
  45. Park Y, Kim Y. 2003. Xenorhabdus nematophila inhibits pbromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54: 134-142.
    CrossRef
  46. Pietrantonio PV, Gill SS. 1996. Bacillus thuringiensis toxins:action on the insect midgut, pp. 345-372. In Lehane MJ, Billingsley PE (eds.). Biology of the Insect Midgut. Chapman & Hall, London,
    CrossRef
  47. Radvanyi F, Jordan L, Russo-Marie F, Bon C. 1989. A sensitive and continuous fluorometric assay for phospholipase A2 using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177: 103-109.
    CrossRef
  48. Rahman MM, Roberts HLS, Sarjan M, Asgari S, Schmidt O. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101: 2696-2699.
    CrossRef
  49. Rahman MM, Roberts HLS, Schmidt O. 2007. Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth Ephestia kuehniella. J. Invertebr. Pathol. 96:125-132.
    CrossRef
  50. Richards GR, Goodrich-Blair H. 2009. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Cell. Microbiol. 11: 1025-1033.
    CrossRef
  51. SAS Institute, Inc. 1989. SAS/STAT User’s Guide, release 6.03 Ed. SAS Institute, Cary, NC.
  52. Seo S, Kim Y. 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Kor. J. Appl. Entomol. 49:241-249.
    CrossRef
  53. Seo S, Kim Y. 2011. Development of “Bt-Plus” biopesticide using entomopathogenic bacteria (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50: 171-178.
    CrossRef
  54. Seo S, Lee S, Hong Y, Kim Y. 2012. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78: 3816-3823.
    CrossRef
  55. Shai Y. 2001. Molecular recognition within the membrane milieu: implications for the structure and function of membrane proteins. J. Membr. Biol. 182: 91-104.
    CrossRef
  56. Shao ZZ, Cui YL, Liu XL, Yi HQ, Ji JH, Yu ZN. 1998. Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. J. Invertebr. Pathol. 72: 73-81.
    CrossRef
  57. Sharma A, Nain V, Lakhanpaul S, Kumar PA. 2010. Synergistic activity between Bacillus thuringiensis Cry1Ab and Cry1Ac toxins against maize stem borer (Chilo partellus Swinhoe). Lett. Appl. Microbiol. 51: 42-47.
  58. Shrestha S, Kim Y. 2009. Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodoptera exigua. Biochem. Biophys. Biotech. 73: 2077-2084.
    CrossRef
  59. Smits WK, Kuipers OP, Veening JW. 2006. Phenotypic variation in bacteria the role of feedback regulation. Nat. Rev. Microbiol. 4: 259-271.
    CrossRef
  60. Sóberon M, Pardo-López L, López I, Gómez I, Tabashnik B, Bravo A. 2007. Engineering modified Bt toxins to counter insect resistance. Science 318: 1640-1642.
    CrossRef
  61. Stanley DW. 2000. Eicosanoids in Invertebrate Signal Transduction Systems. Princeton University Press, Princeton, NJ.
  62. Stanley DW. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51: 25-44.
    CrossRef
  63. Stanley D, Kim Y. 2011. Prostaglandins and their receptors in insect biology. Front. Endocrinol. 2: 1-11.
    CrossRef
  64. Tabashnik BE, Brévault T, Carrière Y. 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nature Biotech. 31: 510-521.
    CrossRef
  65. van Rie J, McGaughey WH, Johnson DE, Barnett BD, van Mellaert H. 1990. Mechanism of insect resistance to the microbial insecticide, Bacillus thuringiensis. Science 247: 72-74.
    CrossRef
  66. Vigneux F, Zumbihl R, Jubelin G, Ribeiro C, Poncet J, Baghdiguian S, et al. 2007. The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. J. Biol. Chem. 13: 9571-9580.
    CrossRef
  67. Volgyi A, Fodor A, Forst S. 2000. Inactivation of a novel gene produces a phenotypic variant cell and affects the symbiotic behavior of Xenorhabdus nematophilus. Appl. Environ. Microbiol. 66: 1622-1628.
    CrossRef
  68. Wright DJ, Iqbal M, Granero F, Ferre J. 1997. Change in a single midgut receptor in the diamondback moth (Plutella xylostella) is only in part responsible for field resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. Appl. Environ. Microbiol. 63: 1814-1819.



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd