Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2014 ; Vol.24-2: 280~286

AuthorEduardo Valencia-Cantero, Juan José Peña-Cabriales
Place of dutyChemical and Biology Research Institute, Michoacan University of San Nicolas of Hidalgo (UMSNH), 58030 Michoacan, Mexico
TitleEffects of Iron-Reducing Bacteria on Carbon Steel Corrosion Induced by Thermophilic Sulfate-Reducing Consortia
PublicationInfo J. Microbiol. Biotechnol.2014 ; Vol.24-2
AbstractFour thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in ironreducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion.
Full-Text
Key_wordBiocorrosion, thermophilic bacterial consortia, sulfate-reducing bacteria, iron-reducing bacteria, protective mineral film
References
  1. Al-Judaibi A, Al-Moubaraki A. 2013. Microbial analysis and surface characterization of SABIC carbon steel corrosion in soils of different moisture levels. Adv. Biol. Chem. 3: 264-273.
    CrossRef
  2. Almeida MAN, De França FP. 1999. Thermophilic and mesophilic bacteria in biofilms associated with corrosion in a heat exchanger. World J. Microbiol. Biotechnol. 15: 439-442.
    CrossRef
  3. Atlas RM, Parks LC (eds.) 1993. Handbook of Microbiological Media. CRC Press, Boca Raton Florida.
  4. Benmoussa A, Hadjel M, Traisnel M. 2006. Corrosion behavior of API 5L X-60 pipeline steel exposed to nearneutral pH soil simulating solution. Mater. Corros. 57: 771-777.
    CrossRef
  5. Bryant R, Jansen W, Boivin J, Laishley E, Costerton W. 1991. Effect of hydrogenase and mixed sulfate-reducing bacterial populations on the corrosion steel. Appl. Environ. Microbiol. 57: 2804–2809.
  6. Cline JD. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr. 14: 454–458.
    CrossRef
  7. Dong ZH, Shi W, Ruan HM, Zhang GA. 2011. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique. Corros. Sci. 53: 2978-2987.
    CrossRef
  8. Duan J, Wu S, Zhang X, Huang G, Du M, Hou B. 2008. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochim. Acta 54: 22-28.
    CrossRef
  9. El-Mendili Y, Abdelouas A, Bardeau JF. 2013. Insight into the mechanism of carbon steel corrosion under aerobic and anaerobic conditions. Phys. Chem. Chem. Phys. 15: 9197-9204.
    CrossRef
  10. Esnault L, Jullien M, Mustin C, Bildstein O, Libert M. 2012. Metallic corrosion processes reactivation sustained by ironreducing bacteria: implication on long-term stability of protective layers. Phys. Chem. Earth 36: 1624-1629.
    CrossRef
  11. Halim A, Watkin E, Gubner R. 2012. Short-term corrosion monitoring of carbon steel by bio-competitive exclusion of thermophilic sulphate reducing bacteria and nitrate reducing bacteria. Electrochim. Acta 77: 348-362.
    CrossRef
  12. Herrera LK, Videla HA. 2009. Role of iron-reducing bacteria in corrosion and protection of carbon steel. Int. Biodeterior. Biodegrad. 63: 891-895.
    CrossRef
  13. Heyer A, D’Souza F, Morales CF, Ferrari G, Mol JMC, de Wit JHW. 2013. Ship ballast tanks: a review from microbial corrosion and electrochemical point of view. Ocean Eng. 70:188-200.
    CrossRef
  14. Javaherdashti R. 2011. Impact of sulphate-reducing bacteria on the performance of engineering materials. Appl. Microbiol. Biotechnol. 91: 1507-1517.
    CrossRef
  15. King RA, Dittmer CK, Miller JDA. 1976. Effect of ferrous ion concentration on the corrosion of iron in semicontinuous cultures of sulphate-reducing bacteria. Br. Corros. J. 11: 105107.
    CrossRef
  16. King RA, Miller JD. 1971. Corrosion by the sulphatereducing bacteria. Nature 233: 491-492.
    CrossRef
  17. King RA, Miller JDA, Wakerley DS. 1973. Corrosion of mild steel in cultures of sulphate-reducing bacteria: effect of changing the soluble iron concentration during growth. Br. Corros. J. 8: 89-93.
  18. King RA, Wakerley DS. 1973. Corrosion of mild steel by ferrous sulphide. Br. Corros. J. 8: 41-45.
    CrossRef
  19. Koch GH, Brongers PH, Thompson NG, Virmani YP, Payer JH. 2002. Corrosion Costs and Prevention Strategies in the United States. US Department of Transportation, Report No. FHWA-RD-01-156, Washington DC.
  20. Kozlova I, Kopteva Z, Zanina V, Purish L. 2010. Microbial corrosion as a manifestation of technogenesis in biofilms formed on surfaces of underground structures. Mater. Sci. 46: 389-398.
    CrossRef
  21. Lee AK, Buehler MG, Newman DK. 2006. Influence of a dual-species biofilm on the corrosion of mild steel. Corros. Sci. 48: 165-178.
    CrossRef
  22. McNeil MB, Little BJ. 1990. Technical note: mackinawite formation during microbial corrosion. Corrosion 46: 599-600.
    CrossRef
  23. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, et al. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433-446.
  24. Obuekwe CO, Westlake DW, Cook FD, Costerton JW. 1981. Surface changes in mild steel coupons from the action of corrosion-causing bacteria. Appl. Environ. Microbiol. 41: 766–774.
  25. Obuekwe CO, Westlake DW, Plambeck JA, Cook FD. 1981. Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil I. Polarization characteristics. Corrosion 37: 461-467.
    CrossRef
  26. Païssé S, Ghiglione JF, Marty F, Abbas B, Gueuné H, Amaya JMS, et al. 2013. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures. Appl. Microbiol. Biotechnol. 97: 7493-7504.
    CrossRef
  27. Potekhina JS, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G. 1999. Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl. Microbiol. Biotechnol. 52: 639-646.
    CrossRef
  28. Rodin VB, Zhigletsova SK, Zhirkova NA, Aleksandrova NV, Chugunov VA, Kholodenko VP. 2011. Corrosive activity of natural microbial associations at various conditions of cultivation. Appl. Biochem. Microbiol. 47: 615-620.
    CrossRef
  29. Rozanova EP, Dubinina GA, Lebedeva EV, Suntsova LA, Lipovskich VM, Tsvetkov NN. 2003. Microorganisms in heat supply systems and internal corrosion of steel pipelines. Microbiology 72: 179-186.
    CrossRef
  30. Singer M, Brown B, Camacho A, Nešic S. 2011. Combined effect of carbon dioxide, hydrogen sulfide, and acetic acid on bottom-of-the-line corrosion. Corrosion 67: 015004-1-015004-16.
    CrossRef
  31. Sørensen J. 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl. Environ. Microbiol. 43: 319-324.
  32. Urios L, Marsal F, Pellegrini D, Magot M. 2013. Microbial diversity at iron-clay interfaces after 10 years of interaction inside a deep argillite geological formation (Tournemire, France). Geomicrobiol. J. 30: 442-453.
    CrossRef
  33. Valencia-Cantero E, Peña-Cabriales JJ, Martínez-Romero E. 2003. The corrosion effects of sulfate- and ferric-reducing bacterial consortia on steel. Geomicrobiol. J. 20: 157-169.
    CrossRef
  34. Venzlaff H, Enning D, Srinivasan J, Mayrhofer KJ, Hassel A W, Widdel F, Stratmann M. 2013. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulphate-reducing bacteria. Corros. Sci. 66: 88-96.
    CrossRef
  35. Videla HA, Le Borgne S, Panter C, Singh-Raman RK. 2008. MIC of steels by iron reducing bacteria. Paper No. 08505, pp. 1-10. In: Corrosion 2008. NACE International, Houston, TX.
  36. von Wolzogen KC, van der Vlugt LS. 1934. Graphitization of cast iron as an electrochemical process in anaerobic soils. Water 18: 147-165.
  37. Xu J, Wang K, Sun C, Wang F, Li X, Yang J, Yu C. 2011. The effects of sulfate reducing bacteria on corrosion of carbon steel Q235 under simulated disbonded coating by using electrochemical impedance spectroscopy. Corros. Sci. 53: 15541562.
    CrossRef
  38. Zhang C, Wen F, Cao Y. 2011. Progress in research of corrosion and protection by sulfate-reducing bacteria. Proc. Environ. Sci. 10: 1177-1182.
    CrossRef
  39. Zhang J, Zhang Y, Chang J, Quan X, Li Q. 2013. Biological sulfate reduction in the acidogenic phase of anaerobic digestion under dissimilatory Fe (III)-reducing conditions. Water Res. 47: 2033-2040.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd