Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2018 ; 28(8): 1247~1259

AuthorJose F. Garcia-Mazcorro, Romina Pedreschi, Boon Chew, Scot E Dowd, Jorge R Kawas, Giuliana D Noratto
AffiliationResearch and Development, MNA de México, San Nicolás de los Garza 66477, México
TitleDietary Supplementation with Raspberry Extracts Modifies the Fecal Microbiota in Obese Diabetic db/db Mice
PublicationInfo J. Microbiol. Biotechnol.2018 28(8): 1247~1259
AbstractRaspberries are polyphenol-rich fruits with the potential to reduce the severity of the clinical signs associated with obesity, a phenomenon that may be related to changes in the gut microbiota. The aim of this study was to investigate the effect of raspberry supplementation on the fecal microbiota using an in vivo model of obesity. Obese diabetic db/db mice were used in this study and assigned to two experimental groups (with and without raspberry supplementation). Fecal samples were collected at the end of the supplementation period (8 weeks) and used for bacterial 16S rRNA gene profiling using a MiSeq instrument (Illumina). QIIME 1.8 was used to analyze the 16S data. Raspberry supplementation was associated with an increased abundance of Lachnospiraceae (p = 0.009), a very important group for gut health, and decreased abundances of Lactobacillus, Odoribacter, and the fiber degrader S24-7 family as well as unknown groups of Bacteroidales and Enterobacteriaceae (p < 0.05). These changes were enough to clearly differentiate bacterial communities accordingly to treatment, based on the analysis of UniFrac distance metrics. However, a predictive approach of functional profiles showed no difference between the treatment groups. Fecal metabolomic analysis provided critical information regarding the raspberry-supplemented group, whose relatively higher phytosterol concentrations may be relevant for the host health, considering the proven health benefits of these phytochemicals. Further studies are needed to investigate whether the observed differences in microbial communities (e.g., Lachnospiraceae) or metabolites relate to clinically significant differences that can prompt the use of raspberry extracts to help patients with obesity.
Full-Text(PDF)
Supplemental Data
KeywordsRaspberry, polyphenols, obesity, gut microbiota
References
  1. Żukiewicz-Sobczak W, Wróblewska P, Zwoliński J, Chmielewska-Badora J, Adamczuk P, Krasowska E, et al. 2014. Obesity and poverty paradox in developed countries. Ann. Agric. Environ. Med. 21: 590-594.
    Pubmed CrossRef
  2. Smith KB, Smith MS. 2016. Obesity statistics. Prim. Care 43: 121-135.
    Pubmed CrossRef
  3. Spieker EA, Pyzocha N. 2016. Economic impact of obesity. Prim. Care 43: 83-95.
    Pubmed CrossRef
  4. Subhan FB, Chan CB. 2016. Review of dietary practices of the 21st century: facts and fallacies. Can. J. Diabetes 40: 348-354.
    Pubmed CrossRef
  5. Clemente JC, Ursell LK, Wegener Parfrey L, Knight R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148: 1258-1270.
    Pubmed CrossRef Pubmed Central
  6. Dinan TG, Cryan JF. 2016. Microbes, immunity, and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacology 42: 178-192.
    Pubmed CrossRef Pubmed Central
  7. Hill DA, Artis D. 2010. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 28: 623-667.
    Pubmed CrossRef Pubmed Central
  8. Harakeh SM, Khan I, Kumosani T, Barbour E, Almasaudi SB, Bahijri SM, et al. 2016. Gut microbiota: a contributing factor to obesity. Front. Cell. Infect. Microbiol. 6: 95.
    Pubmed CrossRef Pubmed Central
  9. Heiman ML, Greenway FL. 2016. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol. Metab. 5: 317-320.
    Pubmed CrossRef Pubmed Central
  10. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108.
    Pubmed CrossRef Pubmed Central
  11. Piotr Mazur S, Nes A, Wold AB, Fagertun Remberg S, Aaby K. 2014. Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem. 160: 233-240.
    Pubmed CrossRef
  12. Burton-Freeman BM, Sandhu AK, Edirisinghe I. 2016. Red raspberries and their bioactive polyphenols: cardiometabolic and neuronal health links. Adv. Nutr. 7: 44-65.
    Pubmed CrossRef Pubmed Central
  13. McDougall GJ, Stewart D. 2005. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 23: 189-195.
    Pubmed CrossRef
  14. Noratto GD, Chew BP, Atienza LM. 2017. Red raspberry (Rubus ideaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice. Food Chem. 227: 305-314.
    Pubmed CrossRef
  15. Overall J, Bonney SA, Wilson M, Beermann A, Grace MH, Esposito D, et al. 2017. Metabolic effects of berries with structurally diverse anthocyanins. Int. J. Mol. Sci. 18: E422.
    Pubmed CrossRef Pubmed Central
  16. Nowak A, Sójka M, Klewicka E, Lipińska L, Klewicki R, Kolodziejczyk K. 2017. Ellagitannins from Rubus idaeus L. exert geno- and cytotoxic effects against human colon adenocarcinoma cell line Caco-2. J. Agric. Food Chem. DOI:10.1021/acs.jafc.6b05387.
    CrossRef
  17. Fotschki B, Juśkiewicz J, Jurgoński A, Rigby N, Sójka M, Kolodziejczyk K, et al. 2017. Raspberry pomace alters cecal microbial activity and reduces secondary bile acids in rats fed a high-fat diet. J. Nutr. Biochem. 46: 13-20.
    Pubmed CrossRef
  18. Viladomiu M, Hontecillas R, Lu P, Bassaganya-Riera J. 2013. Preventive and prophylactic mechanisms of action of pomegranate bioactive constituents. Evid. Based Complement. Alternat. Med. 2013: 789764.
    Pubmed CrossRef Pubmed Central
  19. Zou X, Yan C, Shi Y, Cao K, Xu J, Wang X, et al. 2014. Mitochondrial dysfunction in obesity-associated nonalcoholic fatty liver disease: the protective effects of pomegranate with its active component punicalagin. Antioxid. Redox Signal. 21: 1557-1570.
    Pubmed CrossRef Pubmed Central
  20. Medjakovic S, Jungbauer A. 2013. Pomegranate: a fruit that ameliorates metabolic syndrome. Food Funct. 4: 19-39.
    Pubmed CrossRef
  21. Heber D, Seeram NP, Wyatt H, Henning SM, Zhang Y, Ogden LG, et al. 2007. Safety and antioxidant activity of a pomegranate ellagitannin-enriched polyphenol dietary supplement in overweight individuals with increased waist size. J. Agric. Food Chem. 55: 10050-10054.
    Pubmed CrossRef
  22. Tomas-Barberan FA, Selma MV, Espin JC. 2016. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr. Opin. Clin. Nutr. Metab. Care 19: 471-476.
    Pubmed CrossRef
  23. Noratto GD, Garcia-Mazcorro JF, Markel M, Martino HS, Minamoto Y, Steiner JM, et al. 2014. Carbohydrate-free peach (Prunus persica) and plum (Prunus domestica) juice affects fecal microbial ecology in an obese animal model. PLoS One 9: e101723.
    Pubmed CrossRef Pubmed Central
  24. Lee HC, Jenner AM, Low CS, Lee YK. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 157: 876-884.
    Pubmed CrossRef
  25. Parkar SG, Stevenson DE, Skinner MA. 2008. The potential influence of fruit polyphenols on colonic microflora and human gut health. Int. J. Food Microbiol. 124: 295-298.
    Pubmed CrossRef
  26. Bialonska D, Ramnani P, Kasimsetty SG, Muntha KR, Gibson GR, Ferreira D. 2010. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int. J. Food Microbiol. 140: 175-182.
    Pubmed CrossRef
  27. Bolca S, Van de Wiele T, Possemiers S. 2013. Gut metabotypes govern health effects of dietary polyphenols. Curr. Opin. Biotechnol. 24: 220-225.
    Pubmed CrossRef
  28. Garcia-Mazcorro JF, Mills DA, Noratto G. 2016. Molecular exploration of fecal microbiome in quinoa-supplemented obese mice. FEMS Microbiol. Ecol. 92: fiw089.
    Pubmed CrossRef
  29. Wang B, Chandrasekera PC, Pippin JJ. 2014. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr. Diabetes Rev. 10: 131-145.
    Pubmed CrossRef Pubmed Central
  30. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6: 1621-1624.
    Pubmed CrossRef Pubmed Central
  31. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336.
    Pubmed CrossRef Pubmed Central
  32. Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, Gibbons SM, et al. 2014. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2: e545.
    Pubmed CrossRef Pubmed Central
  33. Navas-Molina JA, Peralta-Sanchez JM, Gonzalez A, McMurdie PJ, Vazquez-Baeza Y, Xu Z, et al. 2013. Advancing our understanding of the human microbiome using QIIME. Methods Enzymol. 531: 371-444.
    Pubmed CrossRef Pubmed Central
  34. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069-5072.
    Pubmed CrossRef Pubmed Central
  35. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31: 814-821.
    Pubmed CrossRef Pubmed Central
  36. Garcia-Mazcorro JF, Nunes Lage N, Mertens-Talcott S, Talcott S, Chew B, Dowd SE, et al. 2017. Effect of dark sweet cherry powder consumption on the gut microbiota, shortchain fatty acids, and biomarkers of gut health in obese db/db mice. PeerJ 6: e4195.
    Pubmed CrossRef Pubmed Central
  37. Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontol. Electron. 4: 1-9.
  38. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60.
    Pubmed CrossRef Pubmed Central
  39. Parks DH, Beiko RG. 2010. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26: 715-721.
    Pubmed CrossRef
  40. Xia J, Sinelnikov IV, Han B, Wishart DS. 2015. MetaboAnalyst 3.0 - making metabolomics more meaningful. Nucleic Acids Res. 43: W251-W257.
    Pubmed CrossRef Pubmed Central
  41. Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11: 265-270.
  42. Garcia-Mazcorro JF, Castillo-Carranza SA, Guard B, GomezVazquez JP, Dowd SE, Brightsmith DJ. 2017. Comprehensive molecular characterization of bacterial communities in feces of pet birds using 16S marker sequencing. Microb. Ecol. 73: 224-235.
    Pubmed CrossRef
  43. Saitoh S, Noda S, Aiba Y, Takagi A, Sakamoto M, Benno Y, Koga Y. 2002. Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin. Diagn. Lab. Immunol. 9: 54-59.
    CrossRef
  44. Sekelja M, Berget I, Næs T, Rudi K. 2011. Unveiling an abundant core microbiota in the human adult colon by a phylogroup-independent searching approach. ISME J. 5:519-531.
    Pubmed CrossRef Pubmed Central
  45. Worthlet DL, Le Leu RK, Whitehall VL, Conlon M, Christophersen C, Belobrajdic D, et al. 2009. A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am. J. Clin. Nutr. 90: 578-586.
    Pubmed CrossRef
  46. Suchodolski JS. 2011. Companion animals symposium:microbes and gastrointestinal health of dogs and cats. J. Anim. Sci. 89: 1520-1530.
    Pubmed CrossRef
  47. Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. 2012. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 80: 3786-3794.
    Pubmed CrossRef Pubmed Central
  48. Tun HM, Bridgman SL, Chari R, Field CJ, Guttman DS, Becker AB, et al. 2018. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 172:368-377.
    Pubmed CrossRef
  49. de la Cuesta-Zuluaga J, Corrales-Agudelo V, Carmona JA, Abad JM, Escobar JS. 2018. Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between obesity and gut microbiota. Int. J. Obes. (Lond.) 42: 424-432.
    Pubmed CrossRef
  50. Higashimura Y, Baba Y, Inoue R, Takagi T, Mizushima K, Ohnogi H, et al. 2017. Agaro-oligosaccharides regulate gut microbiota and adipose tissue accumulation in mice. J. Nutr. Sci. Vitaminol. (Tokyo) 63: 269-276.
    Pubmed CrossRef
  51. Tomas J, Mulet C, Saffarian A, Cavin JB, Ducroc JB, Regnault B, et al. 2016. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc. Natl. Acad. Sci. USA 113: E5934-E5943.
    Pubmed CrossRef Pubmed Central
  52. Garcia-Mazcorro J F, Ivanov I, M ills D A, N oratto G . 2016. Influence of whole-wheat consumption on fecal microbial ecology of obese diabetic mice. PeerJ 4: e1702.
    Pubmed CrossRef Pubmed Central
  53. Liu X, Zeng B, Zhang J, Li W, Mou F, Wang H, et al. 2016. Role of the gut microbiome in modulating arthritis progression in mice. Sci. Rep. 6: 30594.
    Pubmed CrossRef Pubmed Central
  54. Yao J, Carter RA, Vuagniaux G, Barbier M, Rosch JW, Rock CO. 2016. A pathogen-selective antibiotic minimizes disturbance to the microbiome. Antimicrob. Agents Chemother. 60: 4264-4273.
    Pubmed CrossRef Pubmed Central
  55. Ormerod KL, Wood DL, Lachner N, Gellatly SL, Daly JN, Parsons JD, et al. 2016. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4: 36.
    Pubmed CrossRef Pubmed Central
  56. Marangoni F, Poli A. 2010. Phytosterols and cardiovascular health. Pharmacol. Res. 61: 193-199.
    Pubmed CrossRef
  57. Li H, Cao Y. 2010. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39: 1107-1116.
    Pubmed CrossRef
  58. Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, et al. 2016. Hydroxycinnamic acid derivatives:a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. (Lond). 13: 27.
    Pubmed CrossRef Pubmed Central
  59. Noratto G, Chew BP, Ivanov I. 2016. Red raspberry decreases heart biomarkers of cardiac remodeling associated with oxidative and inflammatory stress in obese diabetic db/db mice. Food Funct. 7: 4944-4955.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd