Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2018 ; Vol.28-12: 2079~2094

AuthorDavid Quintero, Jamie Carrafa, Lena Vincent, Hee Jong Lee, James Wohlschlegel, David Bermudes
Place of dutyCalifornia State University, Northridge,University of California at Los Angeles
TitleCo-expression of a Chimeric Protease Inhibitor Secreted Salmonella Protects Therapeutic Proteins from Proteolytic Degradation.
PublicationInfo J. Microbiol. Biotechnol.2018 ; Vol.28-12
AbstractSunflower trypsin inhibitor (SFTI) is a 14 amino acid peptide that contains a single internal disulfide bond. We initially constructed chimeras of SFTI with N-terminal secretion signals from the Escherichia coli and the Pseudomonas aeruginosa, but only detected small amounts of protease inhibition resulting from these constructs. A substantially higher degree of protease inhibition was detected from a C-terminal SFTI fusion with E. coli YebF, which radiated more than a centimeter from a single colony of E. coli using a culture-based inhibitor assay. Inhibitory activity was further improved in YebF-SFTI fusions by the addition of a trypsin cleavage signal immediately upstream of SFTI, and resulted in production of a 14 amino acid disulfide bonded SFTI free in the culture supernatant. To assess the potential of the secreted SFTI to protect the ability of a cytotoxic protein to kill tumor cells, we utilized a tumor-selective form of the Pseudomonas ToxA (OTG-PE38K) alone and expressed as a polycistronic construct with YebF-SFTI in the tumor-targeted Salmonella VNP20009. When we assessed the ability of toxin-containing culture supernatants to kill MDA-MB-468 breast cancer cells, the untreated OTG-PE38K was able to eliminate all detectable tumor cells, while pretreatment with trypsin resulted in the complete loss of activity. However, when OTG-PE38K was coexpressed with YebF-SFTI, activity was completely retained in the presence of trypsin. These data demonstrate that co-expression of protease inhibitors with therapeutic proteins by tumor-targeted bacteria has the potential to enhance the activity of therapeutic proteins by suppressing their degradation within a proteolytic environment.
Full-Text
Supplemental Data
Key_wordProtease inhibitors, Sunflower trypsin inhibitor (SFTI), YebF, VNP20009, tumor-targeted Salmonella, OTG-PE38K
References
  1. Yoon J, Maruyama J, Kitamoto K. 2004. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl. Microbiol. Biotechnol. 89: 747-759.
    Pubmed CrossRef
  2. Weldon JE, Xiang L, Chertov O, Margulies I, Kreitman RJ, Fitzgerald DJ, et al. 2009. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 113: 3792-3800.
    Pubmed CrossRef Pubmed Central
  3. Scharpe S, De Meester I, Hendriks D, Vanhoof G, van Sande M, Vriend G. 1991. Proteases and their inhibitors: today and tomorrow. Biochimie 73: 121-126.
    CrossRef
  4. Structural Genomics Consortium, China Structural Genomics Consortium, Northeast Structural Genomics consortium, et al. 2888. Protein production and purification. Nat. Methods. 5:135-146.
  5. Jose J, Zangen D. 2005. Autodisplay of the protease inhibitor aprotinin in Escherichia coli. Biochem. Biophys. Res. Commun. 333: 1218-1226.
    Pubmed CrossRef
  6. Karnaukhova E, Ophir Y, Golding B. 2006. Recombinant human αl-proteinase inhibitor towards therapeutic use. Amino Acids 30: 317-332.
    Pubmed CrossRef
  7. Karnaukhova E, Ophir Y, Trinh L, Dalal N, Punt PJ, Golding B, et al. 2007. Expression of human al-proteinase inhibitor in Aspergillus niger. Microb. Cell Fact. doi: 10.1186/1475-2859-6-34.
    CrossRef
  8. Motta J-P, Bermúdez-Humarán LG, Deraison C, Martin L, Rolland C, Rousset, P, et al. 2012. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci. Trans. Med. 4: 158ra144.
    Pubmed CrossRef
  9. Forbes NS. 2010. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10: 785-794.
    Pubmed CrossRef Pubmed Central
  10. Hoffman RM. 2015. Back to the Future: Are tumor-targeting bacteria the next-generation cancer therapy? Methods Mol. Biol. 1317: 239-260.
    Pubmed CrossRef
  11. Pawelek JM, Low KB, Bermudes D. 1997. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57: 45374544.
  12. Pawelek J, Low KB, Bermudes D. 2003. Bacteria as tumourtargeting vectors. Lancet Oncol. 4: 548-556.
    CrossRef
  13. Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, et al. 1999. Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat. Biotechnol. 17: 37-41.
    Pubmed CrossRef
  14. Clairmont C, Lee KC, Pike J, Ittensohn M, Low KB, Pawelek J, et al. 2000. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella. J. Infect. Dis. 181: 1996-2001.
    Pubmed CrossRef
  15. Low KB, Ittensohn M, Luo X, Zheng L-M, King I, Pawelek JM, et al. 2004. Construction of VNP20009, a novel, genetically stable antibiotic sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol. Med. 90: 47-60.
    Pubmed
  16. Toso J F, G ill VJ , Hwu P, M arincola F M, R estifo N P, Schwartzentruber DJ, et al. 2002. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20: 142152.
    CrossRef
  17. Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al. 2003. Pilot trial of genetically modified, attenuated Salmonella expression E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10: 737744.
    Pubmed CrossRef
  18. Friedlos F, Lehouritis P, Ogilvie L, Hedley D, Davies L, Bermudes D, et al. 2009. Attenuated Salmonella targets prodrug activating enzyme CPG2 to mouse melanoma, human breast and colon carcinomas for effective suicide gene therapy. Clin. Cancer Res. 14: 4259-4266.
    Pubmed CrossRef
  19. Fu W, Lan H, Li S, Han X, Gao T, Ren D. 2008. Synergistic antitumor efficacy of suicide/ePNP gene and 6-methylpurine 2’-deoxyribosede via Salmonella against murine tumors. Cancer Gene Therapy 15: 474-484.
    Pubmed CrossRef
  20. King I, Ittensohn M, Bermudes D. 2009. Tumor-targeted Salmonella typhimurium over-expressing cytosine deaminase:a novel, tumor-selective therapy. Methods Mol. Biol. 542: 649659.
    Pubmed CrossRef
  21. Chen G, Tang B, Yan BY, Chen JX, Zhou JH, Li JH, Hua ZC. 2013. Tumor-targeting Salmonella typhimurium, a natural tool for activation of prodrug 6MEPdR and their combination therapy in murine melanoma model. Appl. Microbiol. Biotechnol. 97: 4393-4401.
    Pubmed CrossRef
  22. Kim J-E, Phan T-X, Nguyen VH, Dinh-Vu H-V, Zheng JH, Yun M, et al. 2015. Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1β. Theranostics 5: 1328-1342.
    Pubmed CrossRef Pubmed Central
  23. Sorenson B, Banton K, Augustin L, Barnett S, McCullock K, Frykman N, et al. 2010. Safety and immunogenicity of Salmonella typhimurium expressing C-terminal truncated human IL-2 in a murine model. Biologics 4: 61-73.
    CrossRef
  24. Loeffler M, L e’Negrate G, K rajewska M , Reed J C. 2 007. Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc. Natl. Acad. Sci. USA 104:12879-12883.
    Pubmed CrossRef Pubmed Central
  25. Loeffler M, L e’Negrate G, K rajewska M , Reed J C. 2 009. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer Immunol. Immunother. 58: 769-775.
    Pubmed CrossRef
  26. Loeffler M, Le’Negrate G, Krajewska M, Reed JC. 2008. IL-18-producing Salmonella inhibit tumor growth. Cancer Gene Ther. 15: 787-794.
    Pubmed CrossRef Pubmed Central
  27. Yoon WS, Chae YS, Hong J, Park YK. 2011. Antitumor therapeutic effects of a genetically engineered Salmonella typhimurium harboring TNF-α in mice. Appl. Microbiol. Biotechnol. 89: 1807-1819.
    Pubmed CrossRef
  28. Ganai S, Arenas RB, Forbes NS. 2009. Tumor-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br. J. Cancer. 101: 1683-1691.
    Pubmed CrossRef Pubmed Central
  29. Lee, C-H, Wu C-L, Shiau A-L. 2004. Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J. Gene Med. 6: 1382-1393.
    Pubmed CrossRef
  30. Jia H, Li Y, Zhao T, Li X, Hu J, Yin D, et al. 2012. Antitumor effects of Stat3-siRNA and endostatin combined therapies, delivered by attenuated Salmonella, on orthotopically implanted hepatocarcinoma. Cancer Immunol. Immunother. 61: 1977-1987.
    Pubmed CrossRef
  31. Lee, C-H, Wu C-L, Shiau A-L. 2005. Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther. 12: 175-184.
    Pubmed CrossRef
  32. Blache CA, Manuel ER, Kaltcheva TI, Wong AN, Ellenhorn JD, Blazar BR, et al 2012. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Cancer Res. 72:6447-6456.
    Pubmed CrossRef Pubmed Central
  33. Manuel ER, Chen J, D’Apuzzo M, Lampa MG, Kaltcheva TI, Thompson CB, et al. 2015. Salmonella-based therapy targeting indoleamine 2,3-digoxygenase coupled with enzymatic depletion of tumor hyaluronan induces complete regression of aggressive pancreatic tumors. Cancer Immunol. Res. 3:1096-1107.
    Pubmed CrossRef Pubmed Central
  34. Zhang L, Gao L, Zhao L, Guo B, Ji K, Tian Y, et al. 2007. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res. 67: 5859-5864.
    Pubmed CrossRef
  35. Manuel ER, Blache CA, Paquette R, Kaltcheva TI, Ishizaki I, Ellenhorn JD, et al. 2011. Enhancement of cancer vaccine therapy by systemic delivery of a tumor-targeting Salmonellabased STAT3 shRNA suppresses the growth of established melanoma tumors. Cancer Res. 71: 4183-4191.
    Pubmed CrossRef Pubmed Central
  36. Yang, N, Zhu X, Chen L, Li S and Ren D. 2008. Oral administration of attenuated S. typhimurium carrying shRNAexpressing vectors as a cancer therapeutic. Cancer Biol. Ther. 7: 145-151.
    Pubmed CrossRef
  37. Ryan RM, Green J, Williams PJ, Tazzyman S, Hunt S, Harmey JH, et al. 2009. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 16:329-339.
    Pubmed CrossRef
  38. Jeong J-H, Kim K, Lim D, Jeong K, Hong Y, Nguyen VH, et al. 2014. Anti-tumoral effecto fo the mitochondrial target domain of Noxa delivered by an engineered Salmonella typhimurium. PLoS One 9: e80050.
    Pubmed CrossRef Pubmed Central
  39. St Jean AT, Swofford CA, Panteli JT, Brentzel JZ, Forbes NS. 2014. Bacterial delivery of Staphylococcus aureus α hemolysin causes regression and necrosis in murine tumors. Mol. Ther. 22: 1266-1274.
    Pubmed CrossRef Pubmed Central
  40. Swofford CA, St. Jean AT, Panteli JT, Brentzel ZJ, Forbes NS. 2014. Identification of Staphylococcus aureus α-hemolysin as a protein drug that is secreted by anticancer bacteria and rapidly kills cancer cells. Biotechnol. Bioeng. 111: 1233-1245.
    Pubmed CrossRef
  41. Quintero D, Carrafa J, Vincent L, Bermudes D. 2016. EGFRtargeted chimeras of Pseudomonas ToxA released into the extracellular milieu by attenuated Salmonella selectively kill tumor cells. Biotechnol. Bioeng. 113: 2698-2711.
    Pubmed CrossRef Pubmed Central
  42. Lim D, Kim KS, Kim H, Ko K-C, Song JJ, Choi JH, et al. 2017. Anti-tumor activity of an immunotoxin (TGFα-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget 8: 37550-37560.
    Pubmed CrossRef Pubmed Central
  43. Nguyen CT, Hong SH, Sin J-I, Vu VD, Jeon K, Cho KO, et al. 2013. Flagellin enhances tumor-specific CD8+ T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine models. Vaccine 31: 3879-3887.
    Pubmed CrossRef
  44. Zheng JH, Nguyen VH, Jiang S-N, Park S-H, Tan W, Hong SH, et al. 2017. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9: eaak9537.
  45. Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, et al. 2005. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 102: 755-760.
    Pubmed CrossRef Pubmed Central
  46. Kawaguchi K, Murakami T, Suetsugu A, Kiyuna T, Igarashi K, Hiroshima Y. et al. 2017. High-efficacy targeting of coloncancer liver metastasis with Salmonella typhimurium A1-R via intra-portal-vein injection in orthotopic nude-mouse models. Oncotarget 8: 19065-19073.
    Pubmed CrossRef Pubmed Central
  47. Murakami T, Kiyuna T, Kawaguchi K, Igarashi K, Singh AS, Hiroshima Y. et al. 2017. The irony of highly-effective bacterial therapy of a patient-derived orthotopic xenograft (PDOX) model of Ewing’s sarcoma, which was blocked by Ewing himself 80 years ago. Cell Cycle 16: 1046-1052
    Pubmed CrossRef Pubmed Central
  48. Luckett S, Santiago Garcia R, Barker JJ, Konarev AV, Shewry PR, Clarke AR, et al. 1999. High resulution struction of a potent, cyclic protease inhibitor from sunflower seeds. J. Mol Biol. 290: 525-533.
    Pubmed CrossRef
  49. Yuan C, Chen L, Meehan EJ, Daly N, Craik DJ Huang M, et al. 2011. Structure of the catalytic domain of matriptase complex with sunflower trypsin inhibitor-1. BMC Struct. Biol. doi:10.1186/1472-6807-11-30.
    CrossRef
  50. Zoratti GL, Tanabe LM, Varela FA, Murray AS, Bergum C, Colombo E, et al. 2015. Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromalepithelial growth factor signaling. Nat. Commun. 6: 6776.
    Pubmed CrossRef Pubmed Central
  51. Avrutina O, Fitter H, Glotzbach B, Kolmar H, Empting M. 2012. Between two worlds: a comparative study on in vitro and in silico inhibition of trypsin and matriptase by redoxstable SFTI-1 variants at near physiological pH. Org. Biomo. Chem. 10: 7753-7762.
    Pubmed CrossRef
  52. Zhang G, Brokx S, Weiner JH. 2006. Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat. Biotechnol. 24: 100-104.
    Pubmed CrossRef
  53. Edwards D, Høyer-Hansen G, Blasi F, Sloane BF (Eds), 2009. pp. 926. The Cancer Degradome. Springer Science and Business Media, New York, NY.
  54. Eggers CT, Murray IA, Delmar VA, Day GA, Craik CS. 2004. The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase. Biochem. J. 379: 107-118.
    Pubmed CrossRef Pubmed Central
  55. Amann E, Ochs B, Abel KJ. 1988. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69: 301-315.
    CrossRef
  56. Tsai SP, Hartin RJ, Ryu J-I. 1989. Transformation in restriction-deficient Salmonella typhimurium LT2. J. Gen. Microbiol. 135: 2561-2567.
    Pubmed
  57. Broadway KM, Modise T, Jensen RV, Scharf BE. 2014. Complete genome sequence of Salmonella enterica serotype Typhimurium VNP20009, engineered for tumor targeting. J. Biotechnol. 20;192Pt A:177-178.
  58. O’Callaghan D, Charbit. 1990. High efficiency transformation of Salmonella typhimurium and Salmonella typhi by electroporation. Mol. Gen. Genet. 223: 156-158.
    Pubmed CrossRef
  59. Hoover DM, Lubkowski J. 2002. DNAWorks: An automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 30: e43.
    Pubmed CrossRef Pubmed Central
  60. Morales M, Attai H, Troy K, Bermudes D. 2014. Accumulation of single-stranded DNA in Escherichia coli carrying the colicin plasmid pColE3-CA38. Plasmid 77: 7-16.
    Pubmed CrossRef Pubmed Central
  61. Quintero D and Bermudes D. 2014. A culture-based method for determining the production of secreted protease inhibitors. J. Micro. Methods 100: 105-110.
    Pubmed CrossRef Pubmed Central
  62. Rascón AA, Gearin J, Isoe J, and Miesfeld RL. 2011. In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the dengue vector mosquito Aedes aegypti. BMC Biochem. 12: 43.
    Pubmed CrossRef Pubmed Central
  63. Snoek-van Beurden PAM, Von den Hoff JW. 2005. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques. 38: 73-83.
    Pubmed CrossRef
  64. Le QT, Katunuma N. Detection of protease inhibitors by a reverse zymography method, performed in a tris(hydroxymethyl) aminomethane–tricine buffer system. Anal. Biochem. 324: 237-240.
    Pubmed CrossRef
  65. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63.
    CrossRef
  66. Schmidt FR. 2004. Recombinant expression systems in the pharmaceutical industry. Appl. Microbiol. Biotechnol. 65: 363-372.
    Pubmed CrossRef
  67. Wessler S, Schneider G, Backert S. 2017. Bacterial serine protease HtrA as a promising new target for antimicrobial therapy. Cell Commun. Signal. 15: 4.
    Pubmed CrossRef Pubmed Central
  68. Prehna G, Zhang G, Gong X, Duszyk M, Okon M, McIntosh LP, et al. 2012 A protein export pathway involving Escherichia coli porins. Structure 20: 1154-1166.
    Pubmed CrossRef
  69. Sabeh F, Shimizu-Hirota R, Weiss SJ. 2009. Protease-dependent versus -independent cancer cell invasion programs: threedimensional amoeboid movement revisited. J. Cell Biol. 185:11-19.
    Pubmed CrossRef Pubmed Central
  70. Nakamura Y, Sato K, Wakimoto N, Kumura F, Okuyama A, Motososhi K. 2001. A new matrix metalloproteinase inhibitor SI-27 induces apoptosis in several human myeloid leukemia cell lines and enhances sensitivity to TNF alpha-induced apoptosis. Leukemia 15: 1217-1224.
    Pubmed CrossRef
  71. Mehdad A, Brumana G, Souza AA, Barbosa J, Ventura MM, de Freitas SM. 2016. A Bowman-Birk inhibitor induces apoptosis in human breast cancer adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition. Cancer Death Discov. 2: 15067.
    Pubmed CrossRef Pubmed Central
  72. Egeblad M, Werb Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2:161-174.
    Pubmed CrossRef
  73. Peters DC, Nobel S. 1999. Aprotinin: An update of its pharmacology and therapeutic use in open heart surgery and coronary artery bypass surgery. Drugs 57: 233-260.
    Pubmed CrossRef
  74. Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K, et al. 2002. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding β1-6 GlcNAc branching. J. Biol. Chem. 277: 16960-16967.
    Pubmed CrossRef
  75. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB. et al. 2003. Progression of node-negative breast cancer and hepatocyte growth factor activator inhibitor 1 in the pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res. 63:1101-1105.
    Pubmed
  76. LeBeau AM, Lee M, Murphy ST, Hann BC, Warren RS, Santos RD, et al .2013. Imaging a functional tumorigenic biomarker in the transformed epithelium. Proc. Natl. Acad. Sci. USA 110: 93-98.
    Pubmed CrossRef Pubmed Central
  77. Uhland K. Matriptase and its putative role in cancer. 2006. Cell. Mol. Life Sci. 3: 2968-2978.
    Pubmed CrossRef
  78. Takeuchi T, Harris JL, Wuang W, Yan KW, Coughlin SR, Craik CS. 2000. Cellular localization of membrane-type serine protease I and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem. 275: 26333-26342.
    Pubmed CrossRef
  79. Ge L, Shenoy SK, Lefkowitz RJ, DeFea K. 2004. Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J. Biol. Chem. 279: 55419-55424.
    Pubmed CrossRef
  80. Bergum C, Zoratti G, List K. 2012. Strong expression association between matriptase and its substrate prostasin in breast cancer. J. Cell Physiol. 227: 1604-1609.
    Pubmed CrossRef
  81. Cheng M-F, Huang M-S, Lin C-S, Lin L-H, Lee H-S, Jiang J-C, et al. 2014. Expression of matriptase correlates with tumour progression and clinical prognosis in oral squamous cell carcinoma. Histopathology 65: 24-34.
    Pubmed CrossRef
  82. Vergnolle N. 2016. Protease inhibition as new therapeutic strategy for GI diseases. Gut 65: 1215-1224.
    Pubmed CrossRef Pubmed Central
  83. Marx UC, Korsinczky MLJ, Schirra HJ, Jones A, Condie B, Otvos Jr L, et al. 2003. Enzymatic cyclization of a potent Bowman-Birk protease inhibitor, sunflower trypsin inhibitor-1, and solution structure of an acyclic precursor peptide. J. Biol. Chem. 278: 21782-21789.
    Pubmed CrossRef
  84. Korsincsky ML, Clark RJ, Craik DJ. 2005. Disulfide bond mutagenesis and the structure and function of the head-totail macrocyclic trypsin inhibitor SFTI-1. Biochemistry 44:1145-1153.
    Pubmed CrossRef
  85. de Veer SJ, Wang CK, Harris JM, Craik DJ, Swedberg JE. 2015. Improving the selectivity of engineered protease inhibitors: optimizing the P2 prime residue using a versatile cyclic peptide library. J. Med. Chem. 58: 8257-8268.
    Pubmed CrossRef
  86. Fittler K, Avrutina O, Empting M, Kolmar H. 2014. Potent inhibitors of human matriptase-1 based on the scaffold of sunflower trypsin inhibitor. J. Peptide Sci. 20: 415-420.
    Pubmed CrossRef
  87. Jose J, Meyer TF. 2007. The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol. Mol. Biol. Rev. 71: 600-619.
    Pubmed CrossRef Pubmed Central
  88. Schell DJ, Dowe N, Ibsen KN, Riley CJ, Ruth MF, Lumpkin RE. 2007. Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresour. Technol. 98: 2942-2948.
    Pubmed CrossRef
  89. Miratis Sulthoniyah ST, Hardoko, Nursyam H. 2015. Characterization of extracellular protease lactic acid bacteria from shrimp paste. J. Life Sci. Biomed. 5: 01-05.
  90. Kliche T, Li B, Bockelmann W, Habermann D, Klempt M, de Vrese M, et al. 2017. Screening for proteolytically active lactic acid bacteria and bioactivity of peptide hydrolysates obtained with selected strains. Appl. Microbiol. Biotechnol. 101: 7621-7633.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd