Effect of Gene actA on the Invasion Efficiency of *Listeria monocytogenes*, as Observed in Healthy and Senescent Intestinal Epithelial Cells

Jimyeong Ha1,2, Hyemin Oh1,2, Sejeong Kim1,2, Jeeyeon Lee1,2, Soomin Lee1,2, Heeyoung Lee1,2, Yukyung Choi1,2, Sung Sil Moon3, Kyoung-Hee Choi4*, and Yohan Yoon1,2*

1Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Republic of Korea
2Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea
3Sunjin Meat & Processing Research Center, Sunjin Pork, Anseong 17533, Republic of Korea
4Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea

*Corresponding authors
Y.Y. Phone: +82-2-2077-7585; Fax: +82-2-710-9479; E-mail: yyoon@sookmyung.ac.kr
K.H.C. Phone: +82-63-850-6911; Fax: +82-63-850-6911; E-mail: kheechoi@wonkwang.ac.kr

Received: October 20, 2017
Revised: October 31, 2017
Accepted: November 6, 2017
First published online November 9, 2017

*Corresponding authors
Y.Y. Phone: +82-2-2077-7585; Fax: +82-2-710-9479; E-mail: yyoon@sookmyung.ac.kr
K.H.C. Phone: +82-63-850-6911; Fax: +82-63-850-6911; E-mail: kheechoi@wonkwang.ac.kr

Listeria monocytogenes can asymptomatically inhabit the human intestine as a commensal bacterium. However, the mechanism by which *L. monocytogenes* is able to inhabit the intestine without pathogenic symptoms remains unclear. We compared the invasion efficiency of *L. monocytogenes* strains with the 268- and 385-bp-long actA gene. Clinical strains SMFM-CI-3 and SMFM-CI-6 with 268-bp actA isolated from patients with listeriosis, and strains SMFM-SI-1 and SMFM-SI-2 with the 385-bp gene isolated from carcasses, were used for inoculum preparation. The invasion efficiency of these strains was evaluated using Caco-2 cells (intestinal epithelial cell line), prepared as normal and healthy cells with tightened tight junctions and senescent cells with loose tight junctions that were loosened by adriamycin treatment. The invasion efficiency of *L. monocytogenes* strains with the 268-bp-long actA gene was 1.1–2.6-times lower than that of the strains with the 385-bp-long gene in normal and healthy cells. However, the invasion efficiency of both types of strains did not differ in senescent cells. Thus, *L. monocytogenes* strains with the 268-bp-long actA gene can inhabit the intestine asymptomatically as a commensal bacterium, but they may invade the intestinal epithelial cells and cause listeriosis in senescent cells.

Keywords: *Listeria monocytogenes*, tight junction, Caco-2 cells, invasion, senescence

Introduction

Listeria monocytogenes is an intracellular, gram-positive, ubiquitous bacterium found in various environments such as water, soil, and plants [1]. Because *L. monocytogenes* is psychrotrophic, it can grow at refrigeration temperature, and can thus contaminate food at all steps of the food chain. Subsequently, *L. monocytogenes*-contaminated food causes listeriosis, with a mortality rate of up to 20–30% [2].

Listeria monocytogenes has various virulence factors such as hlyA, inlA, inlB, actA, and plcA [3]. Because of these factors, it can survive and proliferate in phagocytes and invade host cells [4]. The onset of the pathogenic mechanism involves binding to the host cells aided by inlA-E cadherin, inlB-Met, and actA heparin sulfate interaction [5, 6]. As *L. monocytogenes* invades the host cell, the pathogen is trapped in the vacuole and then expresses plcA, plcB, and actA genes responsible for vacuole lysis [7, 8]. After the vacuole lysed, actA helps in the formation of the actin tail in the cytosol, which initiates the cell-to-cell spread to begin a new infection cycle [9, 10]. However, recent studies have shown that actA plays an important role in the invasion and aggregation of host cells [11, 12]. In addition, Appelberg and Leal [13] suggested another invasion pathway of *L. monocytogenes* not only involving internalins, but also involving ActA.

ActA is a 640-amino-acid-containing transmembrane protein and contains regions such as the N, P, and C regions, with different roles [9, 10, 14, 15]. The central P domain (amino acids 263–390) contains four proline-rich
repeats. The number of proline-rich repeats is different, and this polymorphism is characterized by a 268- or 385-bp-long actA gene. Some researchers have found that the actA size is related to the pathogenicity of L. monocytogenes [16, 17].

Although listeriosis is caused by L. monocytogenes through food, it is also caused by commensal strains of L. monocytogenes in the immunocompromised and elderly individuals, who have loosened tight junctions of the intestinal epithelial cells [18–20]. However, it is not clear how the commensal L. monocytogenes can inhabit the intestine asymptotically, but cause listeriosis in immunocompromised individuals. In South Korea, although cases of listeriosis have been reported occasionally, L. monocytogenes-induced foodborne outbreaks have not yet been reported. Recently, Oh [21] obtained clinical L. monocytogenes isolates from 10 patients with listeriosis in S. Korea, and the patients were usually the immunocompromised and elderly. Interestingly, they found that the isolates had the 268-bp-long actA gene instead of the 385-bp actA. Thus, it can be hypothesized that L. monocytogenes with the 268-bp-long actA inhabits the healthy intestine with no pathogenic symptoms, like a commensal bacterium, but the pathogen penetrates intestinal epithelial cells, causing listeriosis, when the epithelial cells are aged or the tight junctions are loosened.

Therefore, the objective of this study was to understand how the commensal L. monocytogenes strains can asymptotically inhabit the intestine and cause listeriosis when the condition of the intestinal epithelial cells is physiologically weakened.

Materials and Methods

Inoculum Preparation

L. monocytogenes strains SMFM-SI-1 (serotype: 1/2b; 385-bp actA gene) and SMFM-SI-2 (serotype: 1/2b; 385-bp actA gene) isolated in our laboratory from carcasses, and strains SMFM-CI-3 (serotype: 1/2b; 268-bp actA gene) and SMFM-CI-6 (serotype: 1/2b; 268-bp actA gene) isolated from patients in Chonbuk National University Hospital were cultured in 10 ml of tryptic soy broth (TSB; Becton Dickinson and Company, USA) with yeast extract (YE; Becton Dickinson and Company) at 30°C for 24 h, and 0.1-ml aliquots of the culture were transferred into 10 ml of TSB-YE. After incubation at 30°C for 24 h, the cells were harvested by centrifugation (1,912 g, 4°C, 15 min), washed twice with phosphate-buffered saline (PBS, pH 7.4; 0.2 g of KH_2PO_4, 1.5 g of Na_2HPO_4, 7H_2O, 8.0 g of NaCl, and 0.2 g of KCl in 1 L of distilled water), and resuspended in PBS. The bacterial cell suspensions were adjusted to an optical density of 0.05 at 600 nm (OD_{600}) for Caco-2 cell invasion assay.

Preparation of Caco-2 Cells for Transcriptome Analysis and Invasion Assay

Caco-2 cells (KCLB 30037.1) were cultured in Eagle’s minimum essential medium (MEM; Gibco, New Zealand) supplemented with 20% fetal bovine serum (FBS; Gibco) plus 1% penicillinstreptomycin (Gibco). The medium was replaced every 3 days. Stabilized Caco-2 cells were seeded at a density of 5 × 10^6 cells/ml in 24-well plates (SPL Life Science, Korea). The intestinal epithelial cells of the immunocompromised and elderly are characterized by loose tight junctions [22]. Therefore, the intestinal epithelial cells (Caco-2 cells) were cultured for 2 days for normal cells; 10 days for healthy cells; and 2 days, followed by adriamycin (1,000 nM; ANENTION, Korea) treatment, for senescent cells with loosened tight junctions. To induce senescent intestinal epithelial cells, Caco-2 cells were treated with 250, 500, and 1,000 nM adriamycin for 4 h, which is a typical anticancer drug; it promotes senescence when treated at 500 nM or more in Caco-2 cell [23, 24], washing with Dulbecco’s PBS (DPBS; Wegalne, Korea), and culture in 1 ml of MEM for 3 days. The extent of senescence was evaluated using the Senescence Cells Histochemical Staining Kit (Sigma-Aldrich Co., USA), which measures the β-galactosidase produced by senescent cells [25]. Briefly, all cell supernatants were removed and washed twice with 1 ml of 1× PBS. Then, 1.5 ml of 1× fixation buffer was added to the wells and left for 6 min; the wells were washed three times with 1× PBS. The staining mixture was added to each well, followed by incubation until the cells were stained blue. All blue-stained cells were observed by microscopy (Leica Microsystems CMS GmbH, USA).

Transcriptome Analysis

Aliquots (1 ml) of Trizol (Invitrogen, USA) were added to normal, healthy, and senescent Caco-2 cells in a 24-well plate and incubated at room temperature. Two hundred microliters of chloroform (Daejung Chemicals & Metals Co. Ltd., Korea) was added to each mixture and centrifuged at 12,000 g for 15 min. The supernatants were transferred to 1.5-ml tubes, and mixed with the same volume of isopropanol (Sigma-Aldrich Co.). These mixtures were centrifuged at 12,000 g for 10 min, and the pellets were washed with 75% ethanol and mixed with RNase-free water (Qiagen, Germany) to extract mRNA. The total RNA concentration was measured using the Epoch Micro-Volume Spectrophotometer System (Bio Tek Instruments, USA). The QuantiTect Reverse Transcription Kit (Qiagen) was used to synthesize cDNA. The PCR mixture (25 μl) was prepared using the Rotor-Gene SYBR Green PCR Kit (Qiagen). The relative expression levels of the genes were analyzed with Rotor-Gene Q software (Qiagen) to compare the expression levels of the genes related to cell tight junctions. Duplicate per replication was performed, and an increase of more than two times was considered significant [26]. The primers used are listed in Table 1.
Caco-2 Cell Invasion Assay

This experiment was performed to investigate if *L. monocytogenes* strains with the 268-bp-long *actA* gene have a lower invasion efficiency than those with the 385-bp-long *actA* in healthy intestinal epithelial cells, and if their invasion efficiency was similar in the case of immunocompromised and elderly individuals. The 0.3-ml (7.7 log CFU/ml) aliquots of the prepared *L. monocytogenes* inoculum were inoculated into 2.7ml of MEM supplemented with 20% FBS. One-milliliter aliquots of the mixtures were then inoculated into a monolayer of Caco-2 cells (5 × 10⁴ cells/ml) in MEM + 20% FBS. The upper layer was discarded, and the Caco-2 cells were further incubated in fresh MEM + 20% FBS, along with 50 μg/ml gentamicin to remove the bacterial cells that were attached onto the Caco-2 cells, in CO₂ at 37°C for 2h. The medium in the upper layer was discarded, and the Caco-2 cells were washed twice with DPBS. One milliliter of 0.5% Triton X-100 (Sigma-Aldrich Co.) was then added into each well, and the plate was placed on ice for 20min. The resulting suspension (0.1ml) was inoculated onto PALCAM agar to enumerate invading *L. monocytogenes*. The invasion efficiency of *L. monocytogenes* into Caco-2 cells was calculated by the following equation [29]:

\[
\text{Invasion efficiency} = \left(\frac{\text{number of } L. \text{ monocytogenes cells invading Caco-2 cells (CFU/ml)}}{\text{initial cell count of } L. \text{ monocytogenes (CFU/ml)}} \right)^{100} \times 100
\]

The comparison of the invasion efficiency among *L. monocytogenes* strains was expressed as the ratio of the relative increase in the invasion efficiency of the examined *L. monocytogenes* strain with respect to that of *L. monocytogenes* SMFM-CI-3.

Table 1. Oligonucleotide primers used in the quantitative real-time PCR analysis.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>Sequence (5’→3’)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GADPH</td>
<td>GADPH-F</td>
<td>TCC TGC ACC ACC AAG TGG TTA G</td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>GADPH-R</td>
<td>TGG TIC ACC ACC TGG TTA ATG TC</td>
<td></td>
</tr>
<tr>
<td>Claudin-1</td>
<td>Claudin-F</td>
<td>CTT GAC CCC CAT CAA TGG</td>
<td>[28]</td>
</tr>
<tr>
<td></td>
<td>Claudin-R</td>
<td>CAC CTC CCA GAA GGC AGA</td>
<td></td>
</tr>
<tr>
<td>Occludin</td>
<td>Occludin-F</td>
<td>TCC GTG AGG CCT TTT GAA</td>
<td>[28]</td>
</tr>
<tr>
<td></td>
<td>Occludin-R</td>
<td>GGT GCA TAA TGA TG TGG TGG</td>
<td></td>
</tr>
<tr>
<td>TJP</td>
<td>TJP-F</td>
<td>CGC GGA GAG AGA CAA GAT GT</td>
<td>[28]</td>
</tr>
<tr>
<td></td>
<td>TJP-R</td>
<td>AGC GTC ACT GTG TGC TGT TC</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Normal (A), and senescent Caco-2 cells by 4-h treatment with 1,000 nM adriamycin (B); magnification, ×10.
To determine whether the Caco-2 cells are healthy or senescent, the transcriptomes of the tight junction-associated genes Claudin-1, Occludin, and tight junction protein (TJP) were analyzed, because these genes encode transmembrane proteins that form the structure of tight junctions and help regulate permeability [31-33]. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a housekeeping gene in the analysis. Because of the expression levels of the tight junction-associated genes, the relative gene expression levels of claudin-1, occludin, and TJP were higher in the healthy cells than in the normal and senescent cells (Fig. 2). The relative expression level of TJP in the healthy cells was increased by more than four times of that in the normal cells (Fig. 2). Senescent cells showed lower relative gene expression levels of claudin-1 and occludin, compared with the other cells (Fig. 2). Thus, senescent cells possess loosened tight junctions.

The L. monocytogenes strains with the 385-bp-long actA gene had an invasive efficiency 1.1–1.9-times higher than that of the strains with the 268-bp-long gene in normal cells (Fig. 3A), and 2.6-times higher than that of the strains with the 268-bp-long gene in healthy cells (Fig. 3B). This indicates that the polymorphism of L. monocytogenes actA is related to intestinal epithelial cell invasion, and that the invasion efficiency is influenced by the expression of the tight junction protein. The difference between 385-bp actA and 268-bp actA comes from the proline-rich region. There are many reports suggesting that this region is related to pathogenicity [16, 17], and L. monocytogenes strains with 385-bp actA have higher virulence than those with 268-bp actA.

Fig. 2. Relative expression of tight junction-associated genes in normal, healthy, and senescent Caco-2 cells.

Fig. 3. Comparison of different sizes of actA for relative invasion efficiency in normal (A), healthy (B), and senescent Caco-2 cells (C). Bars with different letters are significantly different (p < 0.05).
Although ActA protein is known to play a role in cell-to-cell spread [10], recent studies [11–13] showed that ActA is also related to aggregation and host cell invasion, which corroborate our findings. In senescent cells, the relative invasion efficiency of *L. monocytogenes* strains with the 268-bp-long actA was similar to that of the strains with the 385-bp-long gene (Fig. 3C). The invasion efficiency of *L. monocytogenes* strains with the 268-bp-long actA in senescent cells might be influenced by the loosened tight junctions of senescent cells, as shown in Fig. 2, as well as their loose morphology and larger flattened cytoplasm, which are characteristic of senescent cells [34]. In addition, He and Sharpless [35] suggested that cell aging causes host toxicity and affects recovery in the event of pathogenicity. This result indicates a higher chance that *L. monocytogenes* strains with the 268-bp-long actA will invade senescent intestinal epithelial cells, compared with normal and healthy cells.

In summary, *L. monocytogenes* strains with a 268-bp-long actA gene may inhibit the intestine as a commensal bacterium without pathogenic symptoms in healthy people who have tightened tight junctions of intestinal epithelial cells, but the strains may invade the intestinal epithelial cells of immunocompromised and elderly individuals who have loosened tight junctions and cell morphology, and cause listeriosis. However, further epidemiological studies need to be performed to confirm this conclusion.

Acknowledgments

This study was supported by a grant (Z-1543081-2014-15-01) received from the Animal and Plant Quarantine Agency in 2014-2015.

Conflict of Interest

The authors have no financial conflicts of interest to declare.

References

