Heterometal-Coordinated Monomeric Concanavalin A at pH 7.5 from Canavalia ensiformis

Nam-Jin Chung1, Yeo Reum Park2, Dong-Heon Lee2, Sun-Young Oh3, Jung Hee Park4*, and Seung Jae Lee2*

1Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju 54896, Republic of Korea
2Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Republic of Korea
3Department of Neurology, Chonbuk National University Medical School, Jeonju 54896, Republic of Korea
4Division of Biotechnology, Chonbuk National University, Iksan 54596, Republic of Korea

The structure and functions of ConA have been studied intensively owing to its specific interactions with carbohydrates and its heterometal (Ca2+ and Mn2+) coordination. Most structures from X-ray crystallography have shown ConA as a dimer or tetramer, because the complex formation requires specific crystallization conditions. Here, we reported the monomeric structure of ConA with a resolution of 1.6 Å, which revealed that metal coordination could trigger sugar-binding ability. The calcium coordination residue, Asn14, changed the orientation of carbohydrate-binding residues and biophysical details, including structural information, providing valuable clues for the development and application of detection kits using ConA.

Keywords: Concanavalin A, lectins, heterometal coordination, microbial detection, sugar binding region

The structure of concanavalin A (ConA) has been studied intensively owing to its specific interactions with carbohydrates and its heterometal (Ca2+ and Mn2+) coordination. Most structures from X-ray crystallography have shown ConA as a dimer or tetramer, because the complex formation requires specific crystallization conditions. Here, we reported the monomeric structure of ConA with a resolution of 1.6 Å, which revealed that metal coordination could trigger sugar-binding ability. The calcium coordination residue, Asn14, changed the orientation of carbohydrate-binding residues and biophysical details, including structural information, providing valuable clues for the development and application of detection kits using ConA.

Keywords: Concanavalin A, lectins, heterometal coordination, microbial detection, sugar binding region
The overall structure was similar to the dimeric and tetrameric structures of ConA, with two antiparallel β-sheets, short helices, and loops, which are crucial for sugar binding [12, 14, 15]. Each β-strand was connected to the loops; one β-sheet had seven strands, and the other had six strands. Most ConA structures have been reported as homodimers or homotetramers, based on different crystallization conditions, and these crystals were generated with different types of carbohydrates [12, 16]. Over 50 crystal structures of ConA from *Canavalia ensiformis* have been deposited, although monomeric crystal structures through X-ray crystallography are limited. This monomeric structure could be valuable for developing diagnostic tools, as ConA has been used as a candidate for detecting diverse viruses and microbial pathogens. These applications do not consider the complex formation of ConA, but various complexes such as monomers and dimers in detection kits can indicate different binding affinities.

ConA is associated with two metal ions, Mn$^{2+}$ and Ca$^{2+}$, and coordination with these ions controls its interaction with carbohydrates. Preliminary reports have indicated the coordination of these metal ions with specific residues; however, these areas need to be revisited owing to their biophysical importance [17–19]. The Mn$^{2+}$ was located 7.3 Å inside the surface of ConA and was coordinated with Glu8 (2.2 Å, Oδ1-Mn$^{2+}$) and His24 (2.3 Å, Nε2-Mn$^{2+}$), as shown in Fig. 1B. Two residues, Asp10 and Asp19, were positioned between the Mn and Ca ions with bidentate bridging modes. Asp10 (Oδ2) and Asp19 (Oδ1) coordinated with the Mn ion at 2.1 Å and 2.2 Å, and with the Ca ion at 2.4 Å and 2.5 Å, respectively. An oxygen atom from the sidechain of Asn14 was solely coordinated to the calcium ion. Previous studies have proposed that the loop region is critical for the sugar-binding activity, and Ca$^{2+}$ coordination is crucial for carbohydrate-binding events [20]. Calcium ion-coordinated residues, including Asp10, Asn14, and Asp19, were positioned at the loop (Asp10–His24). Coordination with Ca$^{2+}$ conferred structural rigidity to this loop, and carbohydrate-binding residues positioned next to the metal-coordinated region could generate specific hydrogen bonds with hydroxyl moieties from sugars.

Superimposition of the Ca$^{2+}$ and Mn$^{2+}$ coordinate regions of the monomer and apo-ConA (metal-free) structures showed different orientations of sidechains (Fig. 2A), although the overall structure was similar, as reflected by a Ca root mean squared deviation (rmsd) value of 0.373 Å [7]. Among the Mn$^{2+}$-coordinated residues, the sidechain of Glu8 had a different orientation due to loss of coordination, which caused a positional change of the β-strand (Ile4–Asp10). In addition, the oxygen atom (Oε2) at Glu9 lost coordination at apo-ConA, and the Mn$^{2+}$ coordination distance shifted from 2.1 Å to 3.4 Å after a 90° rotation. Previous reports have suggested that the Mn$^{2+}$ in ConA could be replaced with other transition metal ions such as Mn$^{3+}$.
Zn$^{2+}$ or Cd$^{2+}$, and these substitutions could affect the sugar-binding residues [11]. Further study showed that Ca$^{2+}$ coordination to ConA induced sugar binding, and Mn$^{2+}$ coordination generated slow conformational changes that did not guarantee carbohydrate binding. The dimeric structure of ConA was aligned with its monomeric structure (Fig. 2B), and the superimposed results showed similar positions of the sidechains of metal-coordinated residues [12], although there were some positional changes in other loops (rmsd = 0.195 Å). This monomeric structure proved that metal coordination governs the coordination residues that affect sugar-binding residues located in adjacent loops.

Sugar-binding residues, including Tyr12, Asn14, Lys99, Asp208, and Arg228, mostly generate hydrogen bonds between sidechains and diverse types of saccharides [7, 9, 15, 21]. As the metal coordination patterns were similar (Fig. 2B), slight changes were monitored by superimposing the structures with dimers in carbohydrate-binding regions (Fig. 3A). Apo-ConA showed significant changes in its sugar-binding region, compared with the monomer, the main cause of which was the cascade effect from heterometal coordination (Fig. 3B). The significant changes in the sugar-binding region were originally generated from the Ca$^{2+}$-coordinated residue Asn14 due to the rotational shift of Asn14 from apo-ConA that caused conformational changes in the sidechain of Arg288. Asn14 also concomitantly affects the position of the sidechain of Tyr12 owing to the absence of metal coordination. Tyr12 from the loop occupies the sidechain of Asp208, thus changing the position of the β-strand (Asp208-Ser215). Other carbohydrate-binding residues, including Leu99 and Tyr100, showed positional changes due to the influence of Tyr12, which pushes the β-strand (Val89-Thr97) towards the side that regulates the sidechains of Leu99 and Tyr100.

The monomeric structure of ConA would be crucial for developing diagnostic tools for detecting carbohydrates. Preliminary reports have proposed that the elimination of Mn$^{2+}$ would not affect the sugar-binding affinity, although Ca$^{2+}$ is essential for carbohydrate interaction [20]. This study revealed the sequential mechanisms by which metal coordination affects sugar-binding residues. The positional changes in the sidechain of Asn14, a Ca$^{2+}$-coordinated residue, were found to trigger conformational changes. Structural comparisons between monomers and other structures indicated that the loop adjacent to the carbohydrate-binding region shows sidechain shifts (Figs. 3A and 3B). These changes were caused by the structural effects of the change in sugar-binding regions, which resulted in steric hindrance of the ligands. Thus, for consistent detection of the binding partners of ConA, the regulation of complex
formation is crucial. This structural analysis provides basic information for the control of complex structures of ConA, and the specific condition of crystallization indicates the possible condition for designing diagnostic kits that can recognize pathogens selectively.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1A6A1A03015876).

References