Antibiotic Resistance Profiles of *Staphylococcus pseudintermedius* Isolates from Canine Patients in Korea

Yoon, Jang Won†, Ki-Jong Lee‡, So-Young Lee, Min-Joo Chae, Jae-Keun Park, Jong-Hyun Yoo*, and Hee-Myung Park*

1Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Korea
2BK21 Basic and Diagnostic Veterinary Specialist Program for Animal Diseases and Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea

Received: January 15, 2010 / Revised: July 22, 2010 / Accepted: September 3, 2010

In this study, the prevalence of antibiotic resistance was examined among 74 *Staphylococcus pseudintermedius* strains recently isolated from clinical cases of canine pyoderma and otitis externa at the veterinary teaching hospital at Konkuk University, Korea. Bacterial resistance to the nine commonly used antibiotics was evaluated by a standard disk diffusion technique based on the guidelines of the Clinical and Laboratory Standards Institute. The results demonstrated that most *S. pseudintermedius* isolates were resistant to penicillin (95.9%) or tetracycline (91.9%), but highly susceptible to amoxicillin/clavulanic acid (90.5%). Among the 74 isolates, 13 mecA-positive and methicillin-resistant *S. pseudintermedius* (MRSP) strains were identified, displaying a high level of resistance (84.6–100%) to each of the individual antibiotics evaluated, with the exception of amoxicillin/clavulanic acid (46.2% resistance). Notably, all of the MRSP isolates exhibited simultaneous resistance to four or more different antibiotics, indicating that they are multiple drug resistant (MDR) strains. Taken together, these results imply that more careful selection or prescription of antibiotics for canine pyoderma and otitis externa should be required for reducing the emergence and/or spread of MDR strains, especially MDR–MRSP isolates, in veterinary pet clinics in Korea.

Keywords: Antibiogram, canine isolates, *S. pseudintermedius*, pyoderma, Korea

MATERIALS AND METHODS

Isolation and Identification of *S. pseudintermedius*

A total of 74 *S. pseudintermedius* strains were isolated from the clinical cases of canine pyoderma and otitis externa submitted to the veterinary teaching hospital at Konkuk University (Seoul, Korea).
during the period 2006 to 2008. All of the staphylococcal isolates were preliminarily screened by standard microbiological procedures including Gram staining, hemolysing, catalase test, and production of coagulase and DNase. Isolates were further differentiated as \textit{S. pseudintermedius} by the polymerase chain reaction (PCR) using species-specific primers for the nuclease (\textit{nuc}) gene as previously described [4], as well as a recently developed PCR restriction fragment length polymorphism (RFLP) method [1], as shown in Fig. 1.

RESULTS

During the study period 2006–2008, a total of 124 staphylococcal strains were isolated from skin or ear lesions of 121 canine patients (data not shown). Among those strains, 74 were finally confirmed to be \textit{S. pseudintermedius} by both biochemical and molecular genetic identification methods (see Materials and Methods). All of the \textit{S. pseudintermedius} strains represented single isolates from individual canine patients.

The antibiotic susceptibility of all 74 \textit{S. pseudintermedius} isolates is summarized in Table 1. The highest antibiotic resistance was observed toward penicillin (71 isolates; 95.9% resistance), tetracycline (68; 91.9%), and sulfamethoxazole/trimethoprim (49; 66.2%), whereas the lowest resistance was observed toward amoxicillin/clavulanic acid (7; 9.5%), with commercially obtained disks (BBL Sensi-Disc Susceptibility Test Discs; Becton Dickinson, MD, USA) for aerobic bacteria. The 74 \textit{S. pseudintermedius} isolates in this study were evaluated for resistance to the nine commonly used antibiotics, penicillin (10 units), tetracycline (30 μg), sulfamethoxazole/trimethoprim (1.25/23.75 μg), erythromycin (15 μg), clindamycin (2 μg), gentamycin (10 μg), oxacillin (1 μg), chloramphenicol (30 μg), and amoxicillin/clavulanic acid (20/10 μg). In general, these antibiotics are known to be commonly used in veterinary medicine not only for canine pyoderma but also for a variety of animal infectious diseases in Korea as well as worldwide. Interpretation of antibiotic susceptibility was carried out by measuring the diameter of the growth inhibition zone according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) [17].

PCR Detection of Methicillin or Penicillin Resistance Genes

Genotypic determination of antibiotic resistance was performed by detecting both \textit{mecA} and \textit{blaZ} genes, which encode penicillin binding protein 2a (conferring methicillin resistance) and β-lactamase (conferring penicillin resistance), respectively. PCR conditions were as described by El Zubeir \textit{et al.} [4]. The identity of amplified PCR products was confirmed by direct DNA sequencing at Macrogen (Korea).

Table 1. Antimicrobial susceptibility of 74 \textit{S. pseudintermedius} isolates from canine pyoderma and otitis patients.

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>Number of \textit{S. pseudintermedius} isolates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Susceptible</td>
</tr>
<tr>
<td>Amoxicillin/Clavulanic acid</td>
<td>67 (90.5)</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>55 (74.3)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>42 (56.8)</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>25 (33.5)</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>18 (24.3)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>14 (18.9)</td>
</tr>
<tr>
<td>Sulfamethoxazole/Trimethoprim</td>
<td>13 (17.6)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>6 (8.1)</td>
</tr>
<tr>
<td>Penicillin</td>
<td>3 (4.1)</td>
</tr>
</tbody>
</table>
oxacillin (13; 17.6%), and chloramphenicol (27; 36.5%) (Table 1).

PCR detection of both blaz and meca demonstrated that almost all of the blaz-positive isolates (95.9%) were resistant to penicillin, with the exception of three (4.1%), suggesting the existence of a subpopulation of blaz-positive penicillin-susceptible isolates (Fig. 2). In addition, all 13 of the oxacillin-resistant isolates tested positive for meca by PCR, indicating that they were meca-mediated MRSP isolates (Fig. 2). Not surprisingly, all of these isolates displayed a high level of resistance (>84.6%) to each of the individual antibiotics evaluated in this study, with the exception of amoxicillin/clavulanic acid (46.2% resistance) (Table 2).

Antibiotic resistance profiling demonstrated that 58 of the 74 S. pseudintermedius isolates (78.4%) possessed a multiple drug resistance (MDR) phenotype, exhibiting simultaneous resistance to four or more different classes of antibiotics other than β-lactams (Fig. 3). It should be noted that all 13 MRSP isolates displayed MDR (Fig. 3). Indeed, all of the strains were simultaneously resistant to at least penicillin, tetracycline, sulfamethoxazole/trimethoprim, and clindamycin (Table 2).

DISCUSSION

In this study, a high prevalence of MDRSP and MRSP was found among clinical isolates of canine pyoderma and otitis externa in Korea. Among 74 S. pseudintermedius isolates, 45 (60.8%) and 13 (17.6%) were MDRSP and MRSP, respectively. In particular, all 13 of the meca-positive MRSP isolates displayed simultaneous resistance to multiple antibiotics other than β-lactams.

Methicillin resistance in staphylococcal species is induced by the production of the low-affinity penicillin-binding protein PBP2a encoded by meca on the genetic element called staphylococcal chromosome cassette mec (SCCmec) [12, 14]. Among the different types of SCCmecs, Type II is known to be the most likely source of...
transmission between animals and humans by direct contact [15]. However, a recent study demonstrated that fluoroquinolone- and methicillin-resistant S. pseudintermedius strains harbor two novel types of SCCmec elements, namely SCCmec II–III and SCCmec VII, which belong to class A/allotype 3 and class A/allotype 5, respectively [3]. Furthermore, Sasaki et al. [20] have reported that high-level oxacillin-resistant MRSP isolates carry SCCmec Type III. Therefore, it would be of interest to determine the type of SCCmec elements among the 13 MRSP isolates in the present study.

Previously, MDR has been frequently associated with methicillin-resistant S. aureus (MRSA) or methicillin-resistant S. intermedius (MRSI) isolates in humans or animals and has also been reported in S. intermedius without methicillin resistance. However, a recent epidemiological study suggested the emergence and spread of MRSI with MDR [10]. Although limited information is available on MDRSP carrying methicillin resistance, the results of the present study imply a high frequency in canine patients with pyoderma and otitis externa in Korea. This prevalence may be due to the lack of strict regulation of antibiotics in pet clinics and/or administration of antibiotics by some dog breeders and pet owners.

Previously, a preferable correlation was shown between the detection of mecA by PCR and oxacillin resistance by disk diffusion test in S. aureus [4, 12]. However, some staphylococcal isolates have been reported to be mecA-positive, oxacillin-susceptible [13, 18] or mecA-negative, oxacillin-resistant [18]. In the present study, three S. pseudintermedius isolates (6.1%) displayed a mecA-negative, intermediate oxacillin-resistant phenotype, whereas nine isolates (48.0%) showed a mecA-positive, oxacillin-susceptible phenotype. Although the exact mechanism behind this observation may require further investigation, it has been proposed that in S. aureus hyperproduction of β-lactamase or PBPs with altered activity are involved [24]. Alternatively, variable expression of mecA might be possible [6]. Since PCR detection of mecA has been considered the gold standard for detection of methicillin-resistant staphylococcal species, these results strongly suggest that oxacillin resistance by disk diffusion should be recommended for the determination of methicillin resistance.

Recently, MRSP infections have been reported in dogs [7, 20, 21]. In Korea, the high frequency of antibiotic-resistant bacteria has been of great concern in veterinary practice [18, 25] as well as in human medicine [11]. The prevalence of MRSP and MDRSP in pet dogs can be a potential hazard to public health; zoonotic transmission of such strains between pet dogs and their owners is possible, and the horizontal transfer of antibiotic-resistant genes such as SCCmec is also likely to occur. Currently, antibiotic usage by humans has been strictly controlled by Korean national policy, resulting in a reduction in inappropriate prescriptions for antibiotics against infections [19]. Continuous monitoring would be required to elucidate whether such a measure results in a decrease in bacterial resistance to certain antibiotics. In conclusion, our results emphasize the importance of judicious selection of antibiotics for small animal patients such as pet dogs by veterinary staffs, especially when long-term treatment is required.

Acknowledgments

This work was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (R11-2002-103). J. W. Yoon was supported by an RP-Grant 2010 of Ewha Womans University.

References