Isolation and Characterization of Strain of *Bacillus thuringiensis* subsp. *kenyae* Containing Two Novel cry1-Type Toxin Genes

CHOI, JAE YOUNG¹, MING SHUN LI²†, HEE JIN SHIM², JONG YUL ROH², SOO-DONG WOO³, BYUNG RAE JIN⁴, KYUNG SAENG BOO², AND YEON HO JE²*

¹Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea
²Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea
³Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763, Korea
⁴College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea

Received: March 27, 2007 Accepted: May 25, 2007

Abstract To identify novel crystal proteins, *Bacillus thuringiensis* 2385-1 was isolated from Korean soil samples and characterized. The H- serotype of 2385-1 was identical to that of subsp. *kenyae* (H4a4c), and its crystal toxin was bipyramidal-shaped. However, 2385-1 showed a much higher toxicity towards *Plutella xylostella* and *Spodoptera exigua* larvae than subsp. *kenyae*. In addition, the crystal protein profile and plasmid DNA pattern of 2385-1 differed from those of subsp. *kenyae*. To verify the crystal protein gene types of 2385-1, a PCR-RFLP analysis was performed, and the results revealed that 2385-1 contained two novel cry1-type crystal protein genes, cry1-5 and cry1-12, in addition to the cry1Ja1 gene. The deduced amino acid sequences of cry1-5 and cry1-12 showed a 97.9% and 75.7% sequence similarity with the Cry1Ab and Cry1Ja crystal proteins, respectively. Among the novel crystal proteins, Cry1-5 showed a high toxicity towards *P. xylostella* and *S. exigua* larvae. In conclusion, *B. thuringiensis* 2385-1 is a new isolate in terms of its gene types, and should be a promising source for an insecticide to control lepidopteran larvae.

Keywords: *Bacillus thuringiensis* 2385-1, PCR-RFLP, cry1-type gene, insecticidal activity, novel crystal protein

Bacillus thuringiensis is an aerobic, Gram-positive, spore-forming soil bacterium that produces proteinaceous parasporal inclusions during sporulation. These parasporal inclusions contain various types of insecticidal crystal protein (ICP). The crystal proteins from *B. thuringiensis* are among the most successful biological control agents for the suppression of agriculturally and medically important insect pests [28], being toxic to the larvae of lepidopteran, dipteran, and coleopteran insects [15], as well as certain hymenoptera, homoptera, and mallophaga, plus many nematodes, flatworms, and Sarcomastigophora [12, 37]. At present, more than 130 *B. thuringiensis* crystal proteins have been described based on their gene sequences and amino acid homologies [6]. *B. thuringiensis* isolates are distributed worldwide, and more than 60,000 have already been collected [24, 25] by various industries in an effort to obtain novel crystal proteins. In addition, *B. thuringiensis* isolates showing different crystal protein gene patterns from the reference strains have also been reported [23]. However, not many crystal protein genes have been identified that are effective against *Plutella xylostella* and *Spodoptera exigua* larvae. Accordingly, this study isolated and characterized a strain of *B. thuringiensis* subsp. *kenyae* encoding novel crystal protein genes with a high toxicity towards both *P. xylostella* and *S. exigua*.

Materials and Methods

Bacterial Strains and Growth Media

B. thuringiensis colonies were isolated from Korean soil samples using the method of Ohba and Aizawa [27]. The *B. thuringiensis* subsp. *kenyae* strain used as a reference was kindly provided by Dr. Ohba (Institute of Biological Control, Faculty of Agriculture, Kyushu University, Japan). GYS and SPY media were used for the preparation of the parasporal inclusions and analysis of the plasmid DNA, respectively.
Preparation of H Antisera and H Agglutination

H antisera for 33 serotypes (H1 to H27) of reported *B. thuringiensis* strains were prepared as previously described [27] and the H antisera-antigen agglutinations performed as previously described using 96-well plates [21].

Morphological Observation and Protein Analysis

The parasporal inclusions were purified using the method of Thomas and Ellar [33] with a discontinuous 60%-85% sucrose gradient. The crystal morphology of the isolate was then examined using phase-contrast microscopy and scanning electron microscopy. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using the method of Li et al. [23].

Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP)

A pair of universal oligonucleotide primers, K5un2 (5'-AGGACCAGGATTACAGGAGG-3') and K3un2 (5'-GCTTCCACGACACAGGATATAGCCAC-3'), that was able to probe all possible cry1-type genes was synthesized and used to perform the PCR using the method of Kuo and Chak [20]. After double digestion of the 1.6 kb PCR-amplified fragment with EcoRI/ClaI, EcoRI/PstI, or EcoRI/XbaI, the cry1-type genes of the corresponding *B. thuringiensis* strains were identified by their RFLP patterns. The PCR amplification was performed using a DNA Thermal Cycler (Perkin Elmer Cetus, NY, U.S.A.).

Cloning and Nucleotide Sequence Analysis

For cloning the cry1-type genes, including the N-terminal toxic fragments of the cry1-type genes of the corresponding strain, the oligonucleotide primers A TG1-F (5'-CCTTCCACGCCACTTGGCTT AGCT AC-3') and A TG2-R (5'-ATGCAA TGCG T ACCTT ACAA TTG TTT AAG T AA T -3') were synthesized. The PCR amplification was performed three times. The median lethal concentrations (LC$_{50}$) were calculated using probit analysis [29].

Expression of Cry1-type Toxins

To express Cry1-type toxins using a baculovirus expression system, the N-terminal toxic fragments of the cry1-type genes amplified using the oligonucleotide primers ATG1-F and N400-R were inserted into the transfer vector pOB1 [13] under the control of the polyhedrin gene promoter of the *Autographa californica* nucleopolyhedrovirus (AcNPV). Recombinant AcNPVs expressing each Cry1-type toxin were then constructed by the cotransfection of each transfer vector with bApGOZA DNA into Sf9 cells [14].

Insect Bioassays

The insecticidal activities of *B. thuringiensis* 2385-1 and each Cry1-type toxin were measured using spore-parasporal inclusion suspensions of *B. thuringiensis* and the baculovirus occlusion bodies incorporated with each Cry1-type toxin, respectively. Serial dilutions of the purified samples were prepared in 0.01% (vol/vol) Triton X-100, and 100-μl aliquots of the serial dilutions were applied to the surface of a Chinese cabbage leaf (1×1 cm2) along with 120 diamondback moth larvae, *P. xylostella* (second-instar larvae), or 120 beet armyworm larvae, *S. exigua* (second-instar larvae). The larval mortality was then recorded over 2 days for the *P. xylostella* assay and 3 days for the *S. exigua* assay. All the tests were conducted at 25°C in 60%-70% humidity with a 16:8 h light:dark cycle and repeated three times. The median lethal concentrations (LC$_{50}$) were calculated using probit analysis [29].

Results

Characteristics and Insecticidal Activities of *B. thuringiensis* 2385-1

A serological study indicated that the H antigenic structure of isolate 2385-1 was identical to that of subsp. kenyae (H4a4c). *B. thuringiensis* 2385-1 produced typical bipyramidal

Table 1. Insecticidal activities of *B. thuringiensis* 2385-1 against *P. xylostella* and *S. exigua* larvae.

<table>
<thead>
<tr>
<th></th>
<th>B. thuringiensis 2385-1</th>
<th>B. thuringiensis subsp. kenyae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LC$_{50}$ ($\times 10^5$ CFU/ml) 95% fiducial limits ($\times 10^5$ CFU/ml)</td>
<td>LC$_{50}$ ($\times 10^5$ CFU/ml) 95% fiducial limits ($\times 10^5$ CFU/ml)</td>
</tr>
<tr>
<td>P. xylostella</td>
<td>0.78</td>
<td>0.42–1.12</td>
</tr>
<tr>
<td>S. exigua</td>
<td>8.1</td>
<td>5.2–12.6</td>
</tr>
</tbody>
</table>

* Colony-forming units.
parasporal inclusions, and no significant differences were found in the shapes and sizes of the vegetative cells, spores, and parasporal inclusions between 2385-1 and subsp. *kenyae* (data not shown).

The insecticidal activities of the crystal proteins produced by isolate 2385-1 were evaluated using *P. xylostella* and *S. exigua* larvae and compared with those of subsp. *kenyae* (Table 1). In the bioassay with *P. xylostella* larvae, the LC_{50} value for 2385-1 was two-fold lower than that for subsp. *kenyae*. In addition, 2385-1 showed a high toxicity towards *S. exigua* larvae, whereas subsp. *kenyae* was absolutely nontoxic to *S. exigua* larvae.

Crystal Protein and Plasmid Profiles of *B. thuringiensis* 2385-1

An SDS-PAGE analysis of the parasporal inclusion proteins revealed that the crystal protein profile of 2385-1 was different from that of subsp. *kenyae* (Fig. 1). Whereas only one major band with a molecular mass of about 130 kDa was present in the crystal protein profile of subsp. *kenyae*, two major bands with molecular masses of about 130 kDa and 150 kDa were present in the profile of 2385-1. In addition, when treated with the gut juice of *Bombyx mori*, the crystal proteins from 2385-1 were digested to about 50 kDa and 65 kDa, whereas the crystal proteins from subsp. *kenyae* were only digested to about 65 kDa. Furthermore, the plasmid DNA pattern for 2385-1 differed from that for subsp. *kenyae* (data not shown).

Crystal Protein Gene Profile of *B. thuringiensis* 2385-1

To study the crystal protein gene profile of isolate 2385-1, a PCR-RFLP analysis was conducted using the primers K5un2 and K3un2 (Fig. 2). The RFLP pattern for 2385-1 was completely different from that for the reference strain subsp. *kenyae* and did not match any previously reported crystal protein genes.

To investigate the cry1-type genes contained in 2385-1, crystal protein gene fragments of about 2.4 kb, including the N-terminal toxic region, were PCR-amplified using the primers ATG1-F and N400-R. The amplified PCR products were then cloned into a pGEM-T Easy vector, resulting in

![Fig. 1. SDS-PAGE analysis of parasporal inclusions of *B. thuringiensis* isolate 2385-1. Lanes: M, molecular mass marker (Novagen, U.S.A.); 1, *B. thuringiensis* subsp. *kenyae*; 2, *B. thuringiensis* 2385-1; 3, *B. thuringiensis* subsp. *kenyae* treated with gut juice of *Bombyx mori*; 4, *B. thuringiensis* 2385-1 treated with gut juice of *Bombyx mori*.](image1)

![Fig. 2. PCR amplification with primers K5un2 and K3un2 (A) and RFLP pattern of PCR-amplified cry1-type genes (B) from *B. thuringiensis*.](image2)

![Fig. 3. Phylogenetic relationships among amino acid sequences of novel and previously reported crystal proteins. The GenBank accession number for each crystal protein gene is shown within brackets. The MP tree was obtained using a heuristic search. The numbers on the branches represent bootstrap values for 1,000 replicates.](image3)
three distinct PCR product clones. Nucleotide sequence
determination of the three clones revealed that one was the
cry1Ja gene (GenBank Accession No. L32019). However,
the other two clones did not match any previously reported
crystal protein genes, and thus were named cry1-5 (GenBank
Accession No. AY570735) and cry1-12 (GenBank Accession
No. AY570736). Notwithstanding, the deduced amino acid
sequences of cry1-5 and cry1-12 showed a 97.9% and
75.7% sequence similarity with the Cry1Ab and Cry1Ja
crystal proteins, respectively (Fig. 3).

Insecticidal Activities of Novel Cry1-type Toxins from
B. thuringiensis 2385-1

To investigate the insecticidal activities of the novel toxins,
Cry1-5, Cry1-12, Cry1Ac, and Cry1C were all expressed
using the recombinant polyhedra technique [5]. According
to this method, each crystal protein was expressed as a
fusion protein with the polyhedrin of AcNPV, and the
fusion protein occluded into the polyhedra of AcNPV. The
recombinant polyhedra containing each crystal protein
were then used to compare the insecticidal activities of
Cry1-5 and Cry1-12 with those of Cry1Ac and Cry1C
towards *P. xylostella* and *S. exigua* larvae (Table 2). In the
bioassay with the *P. xylostella* larvae, the LC_{50} value for
Cry1-5 was three-fold lower than that for Cry1Ac. Additionally,
Cry1-5 showed a higher toxicity than Cry1C
towards the *S. exigua* larvae. However, Cry1-12 showed a very
low toxicity to both the *P. xylostella* and *S. exigua* larvae.

Table 2. Insecticidal activities of Cry1-5 and Cry1-12 crystal proteins against *P. xylostella* and *S. exigua* larvae.

<table>
<thead>
<tr>
<th></th>
<th>95% fiducial limits (ng/ml)</th>
<th>95% fiducial limits (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LC_{50} (ng/ml)</td>
<td>LC_{50} (ng/ml)</td>
</tr>
<tr>
<td>Cry1Ac</td>
<td>20.8</td>
<td>> 2,000</td>
</tr>
<tr>
<td>Cry1C</td>
<td>204.6</td>
<td>454.4</td>
</tr>
<tr>
<td>Cry1Ja</td>
<td>> 500</td>
<td>> 2,000</td>
</tr>
<tr>
<td>Cry1-5</td>
<td>5.2</td>
<td>480.5</td>
</tr>
<tr>
<td>Cry1-12</td>
<td>134.5</td>
<td>> 2,000</td>
</tr>
</tbody>
</table>

DISCUSSION

To date, about 60,000 *B. thuringiensis* isolates lethal to
lepidopterans, dipterans, coleopterans, and nematodes
have been maintained in culture collections throughout the
world [3]. Although *B. thuringiensis* subsp. *aizawai*, subsp.
entomocidus, subsp. *kenyae*, and subsp. *galleriae*, which
contain the cry1C, cry1D, cry1E, or cry1F genes, have been
reported as significantly active against *Spodoptera*
species, very few are toxic to the diamondback moth *P.
xylostella* [4, 26, 34, 35]. However, the *B. thuringiensis* 2385-1
isolated in this study showed a high toxicity towards both
S. exigua and *P. xylostella*, suggesting that this isolate
could be developed as a novel microbial insecticide.

B. thuringiensis 2385-1 was found to belong to subsp.
kenyae as a result of H agglutination, yet the insecticidal
activities and crystal gene profiles of 2385-1 were absolutely
different from those of subsp. *kenyae*. The reference strain,
B. thuringiensis subsp. *kenyae*, has been reported to contain
the cry1Ab, cry1Ac, and cry1E genes, which are not active
or only minimally active against *S. exigua* larvae [3, 26,
34, 36]. In contrast, *B. thuringiensis* 2385-1 was found to
contain the cry1Ja gene and two novel genes, which were
named cry1-5 and cry1-12.

Since cry1Ja has already been reported to have little or
no toxicity towards *P. xylostella* and *S. exigua* larvae
[11, 32], the high toxicity exhibited by isolate 2385-1 was
expected to be due to the novel crystal protein genes, and a
bioassay using each crystal protein separately revealed that
Cry1-5 was responsible for the high toxicity of isolate
2385-1 against both the *P. xylostella* and *S. exigua* larvae.
Consequently, these results suggest that the cry1-5 gene
could be useful in the construction of transgenic plants and
development of microbial insecticides based on recombinant
B. thuringiensis.

Cry1-5 showed a high level of similarity to Cry1Ab,
which is active against *P. xylostella* yet shows very low
activity against *S. exigua* [8]. Previously, Haider and Ellar
[10] reported on a natural mutant Cry1Ab protein in
B. thuringiensis subsp. *aizawai* isolate IC1, which only
differs from the holotype in three amino acid residues, yet
unlike the holotype, Cry1Ab protein shows a dual specificity
against lepidopteran and dipteran insects. Crystal proteins
consist of three structural domains: domain I, which is
involved in pore formation; domain II, which contains
the primary determinants that specify the receptor binding
on the midgut brush border; and domain III, which is
implicated in toxin stability and binding specificity [2, 22].
Toxins sharing a high homology in the loops of domain II
often share a midgut binding site [1, 7], which also suggests
that mutation in the domain II region could affect the
receptor binding affinity, resulting in an alteration of the
insecticidal activity of the toxin. Cry1-5 differed from Cry1Ab
in eleven amino acid residues within the N-terminal toxic
region, thereby implying that these eleven amino acid
residues may have affected the expansion of the host
spectrum of this toxin. However, further investigation,
such as site-directed mutagenesis, is needed to verify the
amino acid residues responsible for the dual specificity of the Cry1-5 protein.

Over the last few years, several PCR-based methodologies, including a PCR using specific primers, multiplex PCR, and PCR-RFLP, have been proposed for the detection of novel cry genes from B. thuringiensis isolates [16, 17, 20]. Nonetheless, the PCR-amplified fragments resulting from these methods did not correspond to the N-terminal toxic region, a pair of universal oligonucleotide primers, ATG1-F and N400-R, were designed to amplify the N-terminal toxic fragments of both known and novel cryl-type genes. As a result, the pair of primers enabled effective screening of the active regions of cryl-type genes from massive plasmid sources of various B. thuringiensis isolates. Furthermore, the fragments amplified using these primers could be directly applied to investigate the insecticidal activity by introducing the amplified fragments to a suitable expression system. Previously, the present authors developed a recombinant polyhedra in which a foreign protein is incorporated into the occlusion body of a baculovirus [13, 18, 19]. When a crystal protein of B. thuringiensis is expressed using this system, the insecticidal protein is then delivered to the gut of the insect by simple per os administration of the recombinant polyhedra [5]. Moreover, the insecticidal activities of different crystal proteins can also be compared using the recombinant polyhedra system, as the quantity of the target protein incorporated into the polyhedra can be estimated. Therefore, a comparison of the insecticidal activities of cryl-type genes corresponding to the N-terminal toxic domain using recombinant polyhedra is an additional novel approach for the screening of effective insecticidal genes.

Acknowledgments

This work was supported by a grant from the BioGreen21 Program, Rural Development Administration, Republic of Korea, the Brain Korea 21 Project, and Seoul National University.

REFERENCES

