Reduction of *Bacillus cereus* in Cooked Rice Treated with Sanitizers and Disinfectants

LEE, MIN-JEONG, DONG-HO BAE¹, DONG-HA LEE², KI-HYO JANG³, DEOG-HWAN OH⁴, AND SANG-DO HA*¹

Department of Food Science and Technology/BET Research Institute, Chung-Ang University, Ansan 456-756, Korea
¹Division of Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
²Korea Food and Drug Administration, Seoul 122-704, Korea
³Department of Food and Nutrition, Kangwon National University, Samcheok, Kangwon 245-711, Korea
⁴School of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Kangwon 200-701, Korea

Received: September 10, 2005
Accepted: November 2, 2005

Abstract This study aimed to identify effective washing and sanitation programs to minimize the contamination of cooked rice by *B. cereus*. As such, the effectiveness of five sanitizers, including QAC, alcohol, chlorine, CaO, and H₂O₂, was evaluated in relation to the survivability of *B. cereus* spores in cooked rice and resulting sensory properties of the rice. The water-treated cooked rice showed remaining *B. cereus* spores at 1.09 log₁₀ CFU/g. In contrast, treatment with the minimum inhibitory concentrations of the sanitizers, such as 200 ppm of QAC, 50% of alcohol, 100 ppm of chlorine, 650 ppm of CaO, and 500 ppm of H₂O₂, destroyed all the spores in the cooked rice below a non-detection limit (ND<0.15 CFU/g). The sensory properties of the sanitizer-treated (1,000 ppm of H₂O₂, 100 ppm of chlorine, and 800 ppm of CaO) cooked rice did not differ significantly from those of the water-treated cooked rice. As a result, 500 ppm of H₂O₂, 650 ppm of CaO, and 100 ppm of chlorine were found to effectively eliminate *B. cereus* spores in rice while cooking.

Key words: *Bacillus cereus*, rice, quaternary ammonium compound, alcohol, calcium oxide, hydrogen peroxide, chlorine

Bacillus cereus is Gram-positive and spore-forming, and causes diarrheal and emetic-type food poisoning. Widely distributed in nature, including soil, air, dust, and water, *B. cereus* can also be isolated from raw and processed foods, including rice, dairy products, meat, and spices. In particular, since *B. cereus* spores are heat resistant, they can survive the cooking process. Thus, when cooked rice is stored at room temperature, the spores can germinate, proliferate, produce emetic toxins, and cause food poisoning [1, 11, 30]. Emetic food poisoning is associated with rice-based products and starch foods [6]. The total infective dose of *B. cereus* causing emetic food poisoning seems to vary from 10⁵ to 10⁶ colony forming units/g (CFU/g). In addition, since the bacteria produce the toxins in the food, emetic food poisoning has a short incubation time, between 30 min and 5 h [7]. It has been reported that *B. cereus* caused 1–22% of all foodborne outbreaks in Europe, Japan, and North America from 1960 to 1992 [27], plus 2 cases of Bacillosis were identified among the 135 pathogenic outbreaks in 2003 [15] and 2 more cases among the 165 pathogenic outbreaks in 2004 [14]. Berghofer et al. [3] reported the detection of *B. cereus* in 81% of wheat and 93% of flour with a high frequency ranging from 0.1 to 1 CFU/g, whereas Sarrías et al. [30] detected 1.2–3.5×10⁵ CFU/g of *B. cereus* in husked rice, and Lee and Chang [19] reported *B. cereus* contamination levels of 5.9×10⁵, 2.6×10⁵, 2.6×10⁴, and 2.3×10⁶ CFU/g in rice, barley, cooked rice, and Kimbab, respectively, with raw rice more contaminated by *B. cereus* than cooked rice and Kimbab. However, preventing contamination is difficult, as *B. cereus* and its spores are widely dispersed in nature. Nonetheless, various methods of disinfection or *B. cereus* inactivation have been developed, including controlling the pH, electrolyzed water, sodium chloride, ozone, hydrogen peroxide, organic acids, ethanol, sodium chloride, grapefruit extracts, nisin, storage at a low temperature, and electron beam irradiation [2, 4, 8, 10, 13, 16, 19, 21–25, 30, 32, 33]. Accordingly, the purpose of this study was to identify effective methods of reducing *B. cereus* spores in rice and cooked rice using sanitizers and disinfectants.

The *B. cereus* used in this study was ATCC 14893, and the spore suspension prepared as described by prEN 14347.
[5]. The B. cereus was inoculated into sterile tryptic soy broth (TSB, Difco Laboratories, Detroit, MI, U.S.A.) for 24 h at 37°C. Thereafter, 2.0 ml of the liquid culture was dispersed on a manganese sulfate agar (MSA) surface that had been dried for 7 days, then 1.0 ml of the MSA was removed and incubated for 1 week at 30°C. To harvest the spores, 2.0 ml of sterile distilled water and glass beads (Glastech MFG, Germany) were placed in the incubated bottles. The same procedure was then repeated one more time with another 2.0 ml of sterile distilled water. Next, the spore suspension was diluted with 500 ml of sterile distilled water to achieve a concentration of 5.5 - 6.0 log10 CFU/ml, and rice immersed in the diluted spore suspension for 30 min for inoculation with B. cereus. After being immersed, the rice was dried for 2 days and stored at room temperature for 1 week to allow the spores to adhere to the rice. The inoculated concentration of B. cereus spores in the rice was 3.51±0.21 log10 CFU/g. To analyze the B. cereus, 225 ml of a sterile mannitol-egg yolk-polymyxin agar (MYP, Difco Laboratories, Detroit, MI, U.S.A.) containing 12.5 ml of egg yolk (Difco Laboratories, Detroit, MI, U.S.A.) and 4.1 ml of antimicrobic vial P (Difco Laboratories, Detroit, MI, U.S.A.) that had been dissolved in 5.0 ml of sterile distilled water was prepared [19]. To enumerate the surviving B. cereus, the sanitizer-treated, untreated, and cooked rice were serially diluted and plated on 15-20 ml of MYP using a pour plate technique. The tested sanitizers were alcohol (fermented ethanol 95%, Korea Ethanol Supplies Co., Korea), chlorine (Kirbychlor, Schering-Plough Ltd, England), quaternary ammonium compounds (QAC, Akzo Quax MCB-80, Namkang, Korea), hydrogen peroxide (Huwasan TR-50, Roam Chemical NV, Belgium), calcium oxide (Yaizu Suisan Kagaku Industry Co. Ltd., Japan), and glutaric dialdehyde (GD, Acrose Or ganics, U.S.A.). The sanitizers were all diluted with distilled water to their respective normal target concentrations, including 200 ppm of QAC, 50% of ethanol, 100 ppm of chlorine, 0.01 - 2.0% of hydrogen peroxide, and 500-2,000 ppm of calcium oxide. The rice was washed with sterile distilled water for 2 min, treated with the sanitizers for 5 min, and rinsed with sterile distilled water for 2 min. The B. cereus in the treated, untreated, and cooked rice was then enumerated. The sensory characteristics, such as the color, odor, taste, and overall acceptability, of the cooked rice were evaluated by a trained panel of 15 using a 5-scale method and compared with the sensory characteristics after water treatment (treated with only water for 2, 5, and 2 min). The panelists washed out their mouths after evaluating each sample. The data from the sensory evaluation were analyzed using a statistical analysis system (SAS, SAS Institute, version 8.1), and the average and significance analyzed using Duncan’s multiple range test.

Table 1 shows the B. cereus counts for the raw and cooked rice before and after sanitizer treatment, such as 200 ppm of QAC, 50% of ethanol with and without 0.3% of GD, 100 ppm of chlorine, 0.01 - 2.0% of hydrogen peroxide,

<table>
<thead>
<tr>
<th>Sanitizers</th>
<th>Concentration (ppm)</th>
<th>Raw rice (log10 CFU/g rice)</th>
<th>Cooked rice (log10 CFU/g rice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No treatment</td>
<td></td>
<td>3.51±0.21ab</td>
<td>1.09</td>
</tr>
<tr>
<td>Water treatment</td>
<td></td>
<td>3.45±0.20</td>
<td></td>
</tr>
<tr>
<td>QAC*</td>
<td>200</td>
<td>2.35±0.05de</td>
<td>ND**</td>
</tr>
<tr>
<td>Alcohol</td>
<td>500,000</td>
<td>2.32±0.02e</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorine</td>
<td>100</td>
<td>2.29±0.02e</td>
<td>ND</td>
</tr>
<tr>
<td>Calcium oxide</td>
<td>500</td>
<td>3.37±0.12b</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>3.35±0.06b</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>3.32±0.02e</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>3.24±0.02e</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>3.25±0.04e</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>3.25±0.05c</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>2,000</td>
<td>2.29±0.05e</td>
<td>ND</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>100</td>
<td>3.70±0.05a</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>3.68±0.05a</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>3.65±0.04a</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>3.56±0.03a</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>3.44±0.20d</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>3.10±0.12c</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>20,000</td>
<td>2.57±0.06d</td>
<td>ND</td>
</tr>
</tbody>
</table>

*QAC: Quaternary ammonium compound.
**ND: not detected (<0.15 CFU/g for B. cereus).
10 similar reduction to approximately 1.2 log of chlorine, and 2,000 ppm of calcium oxide produced a treatment with 200 ppm of QAC, 50% of ethanol, 100 ppm of chlorine, and 2,000 ppm of calcium oxide produced a reduction similar to approximately 1.2 log of QAC per g of B. cereus spore in the rice. The addition of 0.3% GD to 50% ethanol did not enhance the sporidical effect of the 50% ethanol, indicating a poor spore-controlling ability for GD. Jang et al. [8] noted that the numbers of B. cereus, Escherichia coli, and Salmonella typhimurium were reduced to 5–6 log CFU/g after treatment with 30% ethanol for 5 min, plus they noted that 20% ethanol with 10% sodium chloride reduced each bacterium to 3–5 log CFU/g. According to Peng et al. [27], treatment with 100 and 200 ppm of QAC reduced the number of B. cereus in a single cell to 4.8 and 4.5–4.8 log CFU/g, respectively. In the case of B. cereus in biofilm, 25 and 50 ppm of sodium hypochlorite reduced the number of B. cereus to 1.9–2.1 and 2.1–2.3 log CFU/chip, respectively [26]. Jang et al. [9] also noted that B. cereus was inhibited by treatment with hydrogen peroxide at a concentration higher than 75 ppm at pH 6, and heat-resistant S. aureus stopped growing in the presence of 50 ppm hydrogen peroxide at pH 6. Plus, Sagripani et al. [29] reported that 5 log CFU/ml of B. cereus was reduced by treatment with 0.05% sodium hypochlorite and 10% hydrogen peroxide. According to Jang et al. [10], electrolyzed and ozonated water inactivated 0.1–1.8 log CFU/g of B. cereus in job’s tears, sorgum, millet, and Italian millet. Although the treatment with sanitizers did not significantly reduce the B. cereus spores compared with the water treatment, after cooking, no active spores were found in the sanitizer-treated rice, whereas 1.09 log CFU/g of spores still remained in the water-treated rice. This implies that, although the sanitizers did not inactivate the spores immediately, they may have had a synergistic effect in reducing the heat-resistant ability of the B. cereus spores. Melly et al. [21] previously noted that hydrogen peroxide releases pyridine-2,6-dicarboxylic acid (dipicolinic acid) that affects the heat-resistant ability of spores and inactivates the enzymes necessary for germination. According to Jun et al. [12], 12,500 ppm of calcium oxide disinfect vegetative cells and spores of B. subtilis. The effects of the treatments on the sensory properties of the cooked rice are described in Table 2. The cooked rice treated with ethanol and QAC was excluded from the sensory evaluations, owing to the bad taste caused by the residual ethanol and QAC. The calcium oxide-treated rice exhibited a yellowish color, although this was hardly detected by the panelists. The results of the sensory analysis revealed slightly lower scores for the sanitizer-treated rice, yet not significantly different (p<0.05) from the control. Kim et al. [17] reported on the relationship between the time taken to wash rice and the texture of the cooked rice, where the hardness of the cooked rice decreased when increasing the washing time (p<0.01), whereas the springiness and cohesiveness did not change significantly. In addition, Kim et al. [18] also reported that the difference in color and odor of cooked rice treated by three surfactants was not significant at a 5% level.

Consequently, in the present study, 500 ppm of hydrogen peroxide, 650 ppm of calcium oxide, and 100 ppm of chlorine were found to effectively eliminate B. cereus spores in rice during cooking.

Acknowledgment

This Research was supported by the Chung-Ang University Research Grant in 2006.

REFERENCES

