Materials and Methods

General experimental procedures

The compound was characterized using spectroscopic data, including 1H, 13C NMR, and HRMS and was compared with previously published data [1]. An ACQUITY UPLC™ system (Waters Corporation, Milford, MA, USA), equipped with a binary solvent delivery manager and a photodiode array (PDA) was used for ultra-performance liquid chromatography (UPLC) analysis. High-resolution mass spectrometry (HRMS) analysis was performed using a UPLC quadrupole time-of-flight mass spectrometer (UPLC-QTOF-MS) equipped with an electrospray ionization (ESI) interface (Waters Q-TOF PremierTM, Waters Corporation). Nuclear magnetic resonance (NMR) analysis was carried out using a Fourier Transform (FT)-NMR spectrometer (JEOL ECZ500R; JEOL Ltd., Tokyo, Japan) for 1D spectra (1H NMR and 13C NMR).

Plant material and preparation of Lindera erythrocarpa fruit

The fruit of L. erythrocarpa was resamping from Jeju Island, Southern Korea in October 2013 (by Dr. Jin-Hyub Paik). The collected raw materials were deposited in the Herbarium of the Korea Research Institute of Bioscience & Biotechnology (KRIBB, KRIB 0000372). The target compounds were isolated from dried fruits of L. erythrocarpa, as previously described [1]. Briefly, the extracts (770.0 g, yield 15.4%) were fractionated on a silica gel column (10 × 90 cm, JEO prep 60, 40-63 μm, 2.3 kg) and eluted using hexane-ethyl acetate mixtures (20:1→15:1→10:1→8:1→6:1→4:1→2:1→1:1) to give 10 pooled fractions. Fraction 6 was subjected to high-performance liquid chromatography (HPLC) using a reversed-phase
column (YMC-Pack ODS-AQ-HG, 10 mm) and was eluted with a 70% MeOH isocratic system (flow: 100 mL/min, 55.0 min) by seven repeated sample injections (500 mg/8 mL methanol dilutions) to isolate methyl linderone (2.5 g).

Methyl linderone

The characteristics of methyl linderone were as follows: pale-yellow crystals; UV (MeOH) λ_{max} nm 240, 352; 1H NMR (400 MHz, CDCl$_3$) δ 7.92 (1H, d, $J = 16.0$ Hz, H-α), 7.59 (2H, dd, $J = 7.8$, 2.1 Hz, H-2, 6), 7.50 (1H, d, $J = 16.0$ Hz, H-β), 7.36 (3H, m, H-3, 4, 5), 4.17 (6H, 2′,3′-OMe), 4.08 (β′-OMe); 13C NMR (100 MHz, CDCl$_3$) 60.0 (2′,3′-OMe), 64.3 (β′-OMe), 109.4 (C-5′), 121.2 (C-α), 128.3 (C-2, 6), 128.9 (C-3, 5), 130.0 (C-β), 135.6 (C-1), 141.2 (C-4), 147.8 (C-3′), 149.0 (C-2′), 165.4 (C-β′), 184.7 (C-1′), 187.2 (C-4′), HRESIMS m/z [M+H]$^+$ 301.1064, (calculated for C$_{17}$H$_{17}$O$_5$, 301.1076).

![Figure S1. 1H-NMR (400 MHz, CDCl$_3$) spectrum of methyl linderone](image-url)
Figure S2. 13C-NMR (100 MHz, CDCl$_3$) spectrum of methyl linderone

Figure S3. UV, MS2, MS, and HR-ESI-MS data for methyl linderone
Figure S4. HPLC-DAD spectrum of isolated methyl linderone

Acknowledgements

This work was supported by the KRIIBB Research Initiative Program funded by the Ministry of Science and ICT (MIST) of the Republic of Korea. We thank the Korea Basic Science Institute, Ochang, Korea, for providing the NMR data.

Reference