Title: Study of functional verification to abiotic stress through antioxidant gene transformation of Pyropia yezoensis (Bangiales, Rhodophyta) APX and MnSOD in Chlamydomonas

Article Type: Research article

Keywords: Pyropia yezoensis, APX, MnSOD, Chlamydomonas reinardtii
Study of functional verification to abiotic stress through antioxidant gene transformation of \textit{Pyropia yezoensis} (Bangiales, Rhodophyta) APX and MnSOD in \textit{Chlamydomonas}

1Hak-Jyung Lee, 2Ho yeon Yang, 1Jong-il Choi*

1Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, Korea

2Microbial Institute for Fermentation Industry, Sunchang 56048, Korea

*Corresponding author

Jong-il Choi,

Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, Korea

Tel: +82-(0)62-530-1846

Fax: +82-(0)62-530-1949

e-mail: choiji@jnu.ac.kr

Running title: Functional evaluation through gene transformation
Abstract

Seaweed produce antioxidants to counteract environmental stresses, and these antioxidant genes are regarded as important defense strategies for marine algae. In this study, the expression of *Pyropia yezoensis* (Bangiales, Rhodophyta) ascorbate peroxidase (*PyAPX*) and manganese-superoxide dismutase (*PyMnSOD*) was examined by qRT-PCR in *P. yezoensis* blades under abiotic stress conditions. Furthermore, the functional relevance of these genes was explored by overexpressing them in *Chlamydomonas*. A comparison of the different expression levels of *PyAPX* and *PyMnSOD* after exposure to each stress revealed that both genes were induced by high salt and UVB exposure, being increased approximately 3-fold after 12 h. The expression of the *PyAPX* and *PyMnSOD* genes also increased following exposure to H$_2$O$_2$. When these two genes were overexpressed in *Chlamydomonas*, the cells had a higher growth rate than control cells under conditions of hydrogen peroxide-induced oxidative stress, increased salinity, and UV exposure. These data suggest that *Chlamydomonas* is a suitable model for studying the function of stress genes, and that *PyAPX* and *PyMnSOD* genes are involved in the adaptation and defense against stresses that alter metabolism.

Keywords: *Pyropia yezoensis*, APX, MnSOD, *Chlamydomonas reinardtii*,

2
transformation, abiotic stress tolerance
Introduction

Red algae (Rhodophyta), including the genus *Pyropia*, are the oldest lineage of photosynthetic eukaryotes [1]. *Pyropia* grows in the intertidal zone, an environment that undergoes dynamic changes, so accordingly *Pyropia* is exposed to wide variations in temperature, osmotic strength, and light [2]. These environmental stresses result in the accumulation of reactive oxygen species (ROS), including hydrogen peroxide (H$_2$O$_2$), singlet oxygen (O$_2^-$), and hydroxyl radicals (OH$^-$) [3]. The ROS generated through these environmental stresses inhibit the growth of algae by interfering with integral metabolic processes.

In both algae and higher plants, antioxidant systems, such as the enzymes ascorbate peroxidase (APX) and superoxide dismutase (SOD), are known to be the principal protective mechanisms against oxidative stress [3, 4, 5, 6]. In order to scavenge ROS, APX catalyzes the conversion of H$_2$O$_2$ to H$_2$O and O$_2$ within the chloroplast and cytosol of photosynthetic cells using ascorbate as the specific electron donor [7, 8]. The SOD enzyme family converts the superoxide radicals to H$_2$O$_2$ and oxygen. The SOD family members are classified according to the metal species which is present in their redox active centers. Generally, SODs are divided into three classes, MnSOD is found in the cytosol and the thylakoid membrane, Fe- and NiSODs are found in the cytosol, and
Cu/Zn SODs are found in the periplasm [9, 10]. APX and SODs are therefore important enzymes in protecting against oxidative damage. Studies examining the relationship between environmental stress resistance and increased antioxidants has been conducted in higher plants [11, 12, 13, 14], as well as in algae [15, 16, 17, 18, 19, 20, 21]. In addition, the mechanisms of action of antioxidant enzymes have been elucidated following treatment with various abiotic stresses in Pyropia [22, 23, 24]. The search for stress-related genes is crucial to elucidating adaptive mechanisms under the stresses of plants or algae. The unicellular green alga *Chlamydomonas reinhardtii* has been used extensively as a model system for understanding numerous biological processes in eukaryotes at the molecular level [25, 26, 27, 28, 29, 30]. Moreover, the full sequences of the *Chlamydomonas* genome, its plasmids, and its mitochondrial genome are available and the organism is amenable to genetic manipulation by transformation [31, 32, 33]. Recently, studies using transformation have been conducted in *Chlamydomonas* to characterize the function of the heat shock proteins (HSPs) from *P. seriata* and *P. tenera*, [34, 35, 36]. Similarly, the role of cyclophilins (CYPs) in protein folding, symbiosis, plant responses to abiotic stress, have also been examined following their transformation into *Chlamydomonas* [37]. *Chlamydomonas* are photoautotrophs that
have advantages over yeast for understanding the functional relevance of genes that respond to plant and algae stress [38]. However, little research has been performed aimed at characterizing the biological and molecular mechanism of stress responses following the transformation of \textit{P. yezoensis} antioxidant genes into \textit{Chlamydomonas}.

In this study, the expression pattern of antioxidant genes \textit{P. yezoensis} (PyAPX and PyMnSOD) was analyzed following abiotic stress treatment. In addition, we examined the functional role of these \textit{P. yezoensis} antioxidant genes (PyAPX and PyMnSOD) following their expression in \textit{Chlamydomonas}.

\textbf{Materials and methods}

Sample culture and experimental conditions

Gametophytes of \textit{P. yezoensis} were provided by the Seaweed Research Center at Mokpo, Korea. Blades were cultured in modified Grund medium under light intensity of 80 \(\mu\text{mol photons} \cdot \text{m}^{-2} \cdot \text{s}^{-1}\) and 10 h light, 14 h dark at 12\(^\circ\)C in a growth chamber. These cultures were continuously aerated with filter-sterilized air, and the medium was renewed weekly. Subsequent experiments were performed using the gametophyte blade cultured at one month.

\(\text{H}_2\text{O}_2\) and NaCl were used to examine the effect of stress on gene expression using a
slight modification of the method described by Jin et al. [36]. *P. yezoensis* blades were placed in a 200-mL flask and were treated with 1 mM H$_2$O$_2$ or 100 mM NaCl, and each treated flask was maintained under stationary culture conditions at 12°C for 0 to 12 h. To induce UV stress, healthy blades were selected and transferred to a 200-mL flask and the irradiated with UVB (285 nm; 0.26 W m$^{-2}$) at 12°C for 6 or 12 h. All samples were extracted immediately before or after treatment with the abiotic stresses.

The GeneArt *Chlamydomonas* TOPO® Engineering Kit contains the components of the *C. reinhardtii* 137c strain (Invitrogen, Carlsbad, CA, USA). Cells were grown in modified Tris-acetate-phosphate (TAP) medium (15.4 mM Tris HCl, 7.0 mM NH$_4$Cl, 830 mM MgSO$_4$, 337 mM CaCl$_2$, 490 mM K$_2$HPO$_4$, 400 mM KH$_2$PO$_4$, 17.4 mM acetic acid, and Hutner’s trace elements, pH 7.0). *Chlamydomonas* cells were cultured at 25°C in liquid TAP medium, with shaking at 120 rpm under a continuous cool fluorescent light (50 μmol·m$^{-2}$·s$^{-1}$).

Gene expression analysis

Total RNA extraction from leafy gametophyte thalli was performed using an RNeasy plant Mini kit (Qiagen, CA, USA). First-strand cDNA was constructed from 2 μg of total RNA via reverse transcription in a 20 μL reaction volumes using an
oligo(dT)17 primer, and Superscript II reverse transcriptase, in accordance with the
manufacturer’s instructions (BRL Life Technologies, Carlsbad, CA, USA). The reaction
was carried out for 60 min at 52°C, followed by 5 min of heating at 70°C. The first-
strand cDNA reaction mixture was diluted five-fold, and then 2 µL of the diluted cDNA
was added to a 50 µL PCR reaction mixture containing 5 µL of 10× PCR buffer (200
mM Tris-HCl, pH 8.4, 500 mM KCl), 1 µL of 10 mM dNTPs, 1 µL of each gene-
specific primer (10 µM), and 2.5 units of ExTaq DNA polymerase (Takara, Shiga,
Japan). PCR reactions were conducted for 35 cycles, each consisting of 30 s at 95°C, 30
s at 60°C to 64°C, 90 s at 72°C, and 7 min of termination at 72°C. The APX and
MnSOD gene-specific primers from NCBI were as follows: PyAPX (Accession no.
AY282755.1); PyMnSOD (Accession no. DQ146477.2); Py18s (Accession no.
D79976.2); and transgenic primers were prepared and experiment (Table 1). The PCR
products were separated by electrophoresis on 1 % agarose gels.

All qRT-PCR reactions were performed using the following amplification
program: 50°C for 2 min, 95°C for 10 min, and 40 cycles at 95°C, 58°C, and 95°C for
15 s. All real-time PCR reactions were performed under the following conditions: 30 s
at 95°C, followed by 40 cycles of 5 s at 95°C, and 30 s at 60°C. The specificity of the
PCR products was confirmed by analyzing their dissociation curves at the end of each
reaction (15 s at 95°C, 1 min at 60°C, and 15 s at 95°C). The reaction mixture (20 µL) contained 10 µL SYBR Premix Ex Taq GC (TaKaRa Bio), 0.8 µL of each forward and reverse primer (5 µM), 0.4 µL of ROX Reference Dye, and 4 µL of cDNA template (50-fold dilution). The actin gene was used as an internal control to standardize the amount of mRNA in each reaction. The levels of the Py18S mRNA were calculated based on a standard curve. All experiments were conducted in triplicate. The relative expression level was calculated as a ratio to the transcription level at 0 h after stress treatment.

Genomic DNA was extracted using a PureLink Genomic DNA Mini Kit (Invitrogen, Carlsbad, CA, USA) using 100 mL of cultured *Chlamydomonas*. The extracted genomic DNA was used to confirm insertion of *PyAPX* and *PyMnSOD* into the *Chlamydomonas* genome using specific PCR primers. *Chlamydomonas* actin (Accession no. D50838.1) was used as an internal control gene.

Plasmid construction and *Chlamydomonas* transformation

The PCR products were subcloned into the pChlamy_1/D-TOPO® vector (Invitrogen) using the GeneArt® *Chlamydomonas* TOPO® engineering kit according to the manufacturer’s protocol. The pChlamy_1/D-TOPO® vector harbors regulatory sequences with the psaD promoter and a terminator driven by the *Chlamydomonas*
c137 genome for transgene expression. Additionally, it possesses a hygromycin resistance gene (aph7) under the control of the tubB2 promoter and the Hsp70A-RbcS2 terminator for the selection of transformants. The open reading frames of the *PyAPX* and *PyMnSOD* genes were amplified by PCR, and subcloned into a pChlamy_1/D-TOPO® vector using the KpnI and BglII sites. To transform the DNA into *Chlamydomonas* c137, the *PyAPX* and *PyMnSOD* plasmids were linearized with ScaI, and the cells were electroporated using the Gene Pulser Xcell™ (Bio-Rad, Hercules, CA, USA). The electroporation parameters were as follows: 600 V, 50 μF.

After 2 weeks of growth on 24 well plates, the transformed colonies were selected on TAP agar medium containing 10 μg/mL hygromycin (Invitrogen).

Abiotic stress and irradiation tolerance in transformed *Chlamydomonas*

Transformed *Chlamydomonas* cells were grown in TAP medium containing hygromycin at 25°C under a 14 h light, 10 h dark cycle. To investigate oxidative and osmotic tolerances, agar plates supplemented with 0, 2.5, 5, 7, and 10 mM H₂O₂ or 0, 10, 25, 50, and 100 mM NaCl were prepared. We then diluted 2–4 × 10⁶ of the initial cell concentration with fresh medium to reach a final concentration of 10¹–10⁵. Ten microliters of the diluted cells were inoculated onto the agar plates and cultured for 1
week. *C. reinhardtii* 137c and cells transformed with the pClamy_1/D-TOPO® vector were used as controls.

In order to measure the UV resistance of the transformed *Chlamydomonas*, cells were diluted to $10^{1}–10^{5}$ in fresh medium, and 10 μL of the diluted cell suspension was inoculated onto agar plates, after which they were exposed to UV doses of 500, 1000, 1500, and 2000 J (Ultraviolet Crosslinker CL-1000L, LLC, Upland, CA, USA). The survival rate was then measured after transfer to a 25°C growth chamber and culture for 1 week with a 14 h light/10 h dark photocycle.

Results

Expression of antioxidant genes in response to abiotic stresses

We synthesized *PyAPX* and *PyMnSOD* gene specific primers (Table 1) and analyzed the expression of these antioxidant genes after exposure of *P. yezoensis* blades to abiotic stress. As shown in Figure 1A, the expression of these two antioxidant genes increased following exposure to oxidative stress. We found that within 3 h of H$_2$O$_2$ treatment, the expression levels of *PyAPX* were significantly increased, whereas the expression levels of *PyMnSOD* were only slightly increased. However, 6 h of treatment, the expression of *PyMnSOD* had increased to levels similar to those seen for *PyAPX*, however the
expression levels of both genes declined by 12 h.

Following NaCl treatment, the expression of these two antioxidant genes showed a similar pattern to that seen for H$_2$O$_2$ treatment. Both the $PyAPX$ and $PyMnSOD$ genes showed a gradual increase in their expression following NaCl treatment up to 3 h, with $PyMnSOD$ expression being maintained at this level for up to 12 h, while the levels of $PyAPX$ declined slightly (Fig. 1B).

Figure 1C shows that the expressions of the $PyAPX$ and $PyMnSOD$ genes were elevated following UVB exposure. The expression of both genes increased immediately following exposure to UVB stress, with an approximately 2-fold increase in expression occurring at 6 h. The levels of expression of the $PyAPX$ and $PyMnSOD$ genes further increased to approximately 3-fold after 12 h of UVB exposure.

This consumption of antioxidant genes could presumably minimized oxidative damage of the cells by removing ROS when exposed to stress conditions.

Oxidative and osmotic tolerance of transformed *Chlamydomonas*

Chlamydomonas transformed with vectors encoding $PyAPX$ and $PyMnSOD$ were selected on a hygromycin-containing medium, and the successful introduction of the $PyAPX$ and $PyMnSOD$ genes was confirmed by RT-PCR and qRT-PCR (Fig. 2). We
isolated one hygromycin resistant *Chlamydomonas* clone following transformation with a plasmid encoding the *PyAPX* gene, and confirmed the successful expression of the *PyAPX* gene by RT-PCR (Fig. 2A, B). In the case of *PyMnSOD*, we obtained four independent hygromycin resistant clones. The clone *PyMnSOD*\(_2\) showed the highest level of *PyMnSOD* expression compared to the other three transformed lines (Fig. 2C, D). For this reason, we elected to study the effect of abiotic stress on this *PyMnSOD*\(_2\) transformed *Chlamydomonas* line. Figure 2E shows a confirmation of the successful insertion of the *PyAPX* and *PyMnSOD* genes into the *Chlamydomonas* genome by PCR.

To assess salt tolerance, the *Chlamydomonas* strains expressing *PyAPX* or *PyMnSOD* were cultured on agar plates treated with different concentrations of NaCl, with the *Chlamydomonas* strain c137 and vector only transformed *Chlamydomonas* as controls. All *Chlamydomonas* cells were observed to grow at similar levels on agar plates at 10 and 25 mM NaCl. However, when cells were grown on plates at 50 mM NaCl, the *Chlamydomonas* expressing either *PyAPX* or *PyMnSOD* exhibited better growth than *Chlamydomonas* c137 or *Chlamydomonas* transfected with an empty vector (Fig. 3A).

Growth was also compared on plates supplemented with 1 to 10 mM H\(_2\)O\(_2\) to assess tolerance to oxidative stress. All cells exhibited similar growth at 2.5 and 5 mM H\(_2\)O\(_2\), but interestingly, at a concentration of 7.5 mM H\(_2\)O\(_2\), only the transformed
Chlamydomonas cells survived. Based on these data, the transformed Chlamydomonas cells proved to be more resistant to salt or oxidative stress than the control Chlamydomonas cells (Fig. 3B). In order to measure the UV resistance of the transformed Chlamydomonas following UV treatment, the cells were inoculated onto agar plates and exposed to various UV doses. The control and transformed Chlamydomonas cells grew at similar rates after exposure to UV doses of 0 and 500 J plate, but at higher UV intensities (1000 and 1500 J), the transformed Chlamydomonas showed greater survival than the control cells (Fig. 3C). However, either the control or the transformed Chlamydomonas cell lines were detected on the culture plates after exposure to 2000 J of UV radiation.

These results suggest that the PyAPX and PyMnSOD gene contributes to abiotic stress tolerance in Chlamydomonas.

Discussion

Pyropia inhabiting the intertidal zone are inevitably exposed to high temperatures, UV radiation, high salinity, and oxidative stress. These stressors can inhibit growth, photosynthesis, pigment synthesis, and cause DNA damage. They also cause the accumulation of intracellular ROS, leading to mitochondrial changes, and
damage to chloroplasts and phycobilisomes [39, 40, 41, 42]. In the case of macroalgae, they respond to stress by increasing the expression of antioxidant defense enzymes such as the ROS scavenging enzymes APX and SOD, and these enzymes an important role in effectively eliminating the stress-induced ROS. [43, 44, 45]. In *Ulva fasciata*, antioxidant genes and enzymes have been found to be overexpressed under high salt stress conditions, suggesting that they are important in stress response [46]. In addition, it has been reported that treatment of cells with H$_2$O$_2$ can upregulate the expression of genes involved in antioxidant defense [47, 48]. Our study showed that the *P. yezoensis* antioxidant genes *PyAPX* and *PyMnSOD* are overexpressed when exposed to hydrogen peroxide, salinity, and UVB stress.

Other stress studies have shown that the activities of antioxidant enzymes are significantly increased in response to hydrogen peroxide, superoxide anions, and carbonyl content under desiccation stress condition in *P. columbina* [22]. We suggest that overexpression of these antioxidant genes occurs in response to various stresses, and this presumably is a defense mechanism that effectively reduces the intracellular ROS levels.

Chlamydomonas is a suitable model system to study the abiotic stress responses following transformation [38]. For *Pyropia* sp., previous studies have been conducted to
identify and characterize genes using *Chlamydomonas* [34, 35, 39, 50]. Among these, it has been shown that transformation of *Chlamydomonas* with the HSPs chaperone protein increased both resistance and survival rates under a variety of abiotic stress conditions.

The APX and MnSOD genes are important key components that contribute to cell homeostasis under a variety of stress conditions. Our results confirm that *Chlamydomonas* cells transformed with *PyAPX* and *PyMnSOD* genes had higher resistance than normal cells to abiotic stresses. It is thought that it is heterogeneously expressed in the *Chlamydomonas* cells and acts as an additional stress defense factor.

Our study has shown the response of *P. yezoensis* antioxidant genes under abiotic stress conditions, and their biological functions following their transformation into *Chlamydomonas*. We conclude that the overexpression of the *PyAPX* and *PyMnSOD* genes that occurs following abiotic stress is an important defense mechanism in *P. yezoensis*. Furthermore the introduction of genes encoding *PyAPX* and *PyMnSOD* into *Chlamydomonas* may play a role for the constitutive expression in cells and supporting essential resistance factors for abiotic stresses. We have demonstrated that *PyAPX* and *PyMnSOD* genes are closely related to stress tolerance and suggested that the transformation system can be used to identify various physiological and molecular
functions of *Pyropia*.

Acknowledgments

This research was supported by Golden Seed Project, Ministry of Oceans and Fisheries (213008-05-2-SB910), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2015R1A2A2A01004733).

Conflict of Interest

The authors have no financial conflicts of interest to declare.
Reference

Table caption

Table 1. Primers used in the present study

<table>
<thead>
<tr>
<th>Primer name</th>
<th>(5′-3′) Nucleotide sequence</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>PyAPX qRT-PCR F</td>
<td>ATCAGCTACGCGGACCTCTA</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>PyAPX qRT-PCR R</td>
<td>AAGCCCATCCGGTAAAAGAT</td>
<td></td>
</tr>
<tr>
<td>PyMnSOD qRT-PCR F</td>
<td>GCTGTTACATCAGCAGCACTC</td>
<td></td>
</tr>
<tr>
<td>PyMnSOD qRT-PCR R</td>
<td>ACGTCAAAGTCGACGGTCTTT</td>
<td></td>
</tr>
<tr>
<td>18S rRNA F</td>
<td>GACAATGAAATACGAATGCC</td>
<td></td>
</tr>
<tr>
<td>18S rRNA R</td>
<td>GACAATGAAATACGAATGCC</td>
<td></td>
</tr>
<tr>
<td>TOPO_PyAPX F</td>
<td>CACCGTGTGCTGACCTGGAGAAGGCGGTCCCGGCC</td>
<td>Transformation</td>
</tr>
<tr>
<td>TOPO_PyAPX R</td>
<td>TCAGCCTTTGCTGACCTGGAGAAGGCGGTCCCGGCC</td>
<td>Transformation</td>
</tr>
<tr>
<td>TOPO_PyMnSOD F</td>
<td>CACCGCGTTTGGCTTGCCCCCTGCCCCTGCTATGCC</td>
<td></td>
</tr>
<tr>
<td>TOPO_PyMnSOD R</td>
<td>TTACACCAGGCGGTGAAGGCAGCGAG</td>
<td></td>
</tr>
<tr>
<td>CrActin F</td>
<td>TGTGCATACGTTGAGATAGCTTG</td>
<td></td>
</tr>
<tr>
<td>CrActin R</td>
<td>ATGACCCGCTCTCTATATCTTT</td>
<td></td>
</tr>
</tbody>
</table>
Figure captions

Figure. 1. Relative expressions levels of PyAPX and PyMnSOD under abiotic stresses in P. yezoensis. Gametophyte blades were harvested at 0, 1, 3, 6, and 12 h to determine the transcript levels of PyAPX and PyMnSOD following exposure to either H$_2$O$_2$ and increased salinity. (A) Relative expression levels of PyAPX and PyMnSOD following H$_2$O$_2$ stress. (B) Relative expression levels of PyAPX and PyMnSOD following exposure to increased salinity. (C) Relative expression levels of PyAPX and PyMnSOD following exposure to UVB. Py18S RNA was used as the internal control gene. Bars are means ± standard deviation (SD).

Figure. 2. Verification of the introduction and expression of the PyAPX and PyMnSOD genes in Chlamydomonas. cDNA was extracted from the indicated transformed Chlamydomonas cells and amplified with either PyAPX or PyMnSOD specific primers, as appropriate. (A, B) Confirmation of the introduction of the PyAPX gene in one clone by RT-PCR. (C, D) Confirmation of the introduction of the PyMnSOD gene in four clones by RT-PCR. (E) Confirm of gene introduction into transformed Chlamydomonas cells by PCR using genomic DNA. 1. Chlamydomonas c137, 2. Confirmation of empty TOPO_vector introduced into Chlamydomonas 3. Confirmation of PyAPX gene introduced into Chlamydomonas, 4. Confirmation of PyMnSOD gene introduced into
Figure 3. Survival and growth pattern of transformed *Chlamydomonas* cells under H$_2$O$_2$ or salt stress conditions. (A) Cells were inoculated on agar plates prepared by supplementation with 0, 10, 25, 50, or 100 mM NaCl, and cultured for 1 week. (B) Cells were inoculated on agar plates prepared by supplementation with 0, 2.5, 5, 7, or 10 mM H$_2$O$_2$, and cultured for 1 week. (C) Survival and growth pattern of transformed *Chlamydomonas* cells under UV stress conditions. Cells were inoculated on the agar plate and irradiated with UV at doses of 0, 500, 1000, 1500, or 2000 J UVB, followed by incubation for 1 week. The *Chlamydomonas* strain c137 and empty TOPO_vector transformed cells were used as controls.
Fig. 1.
Fig. 2.
Fig. 3. Fig. 3.