Biosynthesis of Two Flavonoids, Apigenin and Genkwanin, in *Escherichia coli*

Hyejin Lee†, Bong Gyu Kim‡, Mihyang Kim§, and Joong-Hoon Ahn*†

1Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
2Department of Forest Resources, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea
3Department of Systems Biotechnology, Chung-Ang University, Anseong 456-756, Republic of Korea

Introduction

Plants produce diverse secondary metabolites such as alkaloids, isoprenoids, and polyphenols [5]. Some of these chemicals have been used as medicines and/or for nutrition [18]. Many natural compounds originating from plants are considered as starting materials for the development of new medicines [1]. Microbial production of plant secondary metabolites has become an attractive topic. Biological pathways for the synthesis of several plant metabolites have been reconstructed in microorganisms, and hosts such as *Escherichia coli* and *Saccharomyces cerevisiae* have been engineered to supply precursors for the synthesis of final products [31].

Flavonoids form a class of phenolic compounds found in plants and can be classified into several groups, including flavanones, flavones, flavonols, anthocyanins, and isoflavones [34]. Among these groups, flavanones are starting compounds for the synthesis of other flavonoid groups. The flavanone naringenin can be synthesized from tyrosine by several enzymes, including tyrosine ammonia lyase (TAL), 4-coumaroyl coenzyme A ligase (4-CL), chalcone synthase (CHS), and chalcone isomerase (CHI) [36] (Fig. 1). Genes for flavanone biosynthesis have been cloned and characterized in various plants [37], making it possible to assemble these plants genes and reconstruct the flavonoid biosynthesis pathway in microorganisms for the synthesis of a target flavonoid [35]. The typical flavone apigenin is synthesized from naringenin (a flavanone) by flavone synthase (FNS). FNS has stereospecificity and uses only (S)-naringenin as a substrate [22]. Although apigenin itself has several biological activities, including anti-inflammatory [6], antidepressant [28], and anticancer activities [7], the regioselective O-methylation of apigenin (to generate genkwanin) confers new biological activities, including antibacterial [4, 23], antiplasmodial [13], radical scavenging [32], chemopreventive [8], and inhibiting 17β-hydroxyysteroid dehydrogenase type 1 [3] activities. Although genkwanin has been shown to inhibit the development of cotton-pellet-induced granuloma in rat, the molecular mechanisms of this anti-inflammatory activity remain obscure [29]. Apigenin is found in various fruits and vegetables but the most
common sources are parsley and celery [24]. Genkwanin has been identified only in <i>Daphne genkwa</i> [2]. Therefore, in order to explore novel biological functions of genkwanin, alternative approaches for genkwanin acquisition are necessary. Chemical synthesis is one alternative method to obtain genkwanin [21]. Conversion of apigenin into genkwanin using <i>E. coli</i> harboring O-methyltransferase was also successful [9]. By constructing flavonoid biosynthesis pathways in a microbe such as <i>E. coli</i>, diverse flavonoids have been synthesized from glucose [12, 25, 30]. However, most previous reports of flavonoid biosynthesis have focused on flavanones and their derivatives. Here, we synthesized the bioactive flavone derivative genkwanin from glucose using <i>E. coli</i>. By introducing six genes involved in genkwanin biosynthesis into an engineered <i>E. coli</i> strain, approximately 41 mg/l genkwanin was synthesized.

Materials and Methods

Constructs

The TAL gene from <i>Saccharothrix espanaensis</i> was cloned as previously described [12]. The 4CL (<i>O</i>s4CL) and CHS (<i>P</i>eCHS) genes were also cloned as previously described [11, 15]. Both <i>O</i>s4CL and <i>P</i>eCHS were subcloned into the EcoRI/NcoI sites and NdeI/KpnI sites of the pCDFDuet vector (Novagene), respectively, and the resulting construct, in which both <i>O</i>s4CL and <i>P</i>eCHS are controlled by an independent T7 promoter, was named pC-pPeCHS-pO4sCL. In this construct, both genes are controlled by different T7 promoters. The construct in which both <i>P</i>eCHS and <i>O</i>s4CL are controlled by one T7 promoter was named pC-pPeCHS-Os4CL. CHI from <i>Medicago truncatula</i> (GenBank No. XM_003592713) was cloned and inserted into the NdeI/KpnI sites of pC-pPeCHS-pOs4CL and pC-pPeCHS-Os4CL. The resulting constructs were named pC-pPeCHS-pOs4CL-pMtCHI and pC-pPeCHS-Os4CL-pMtCHI. Flavone synthase (FNS; AY230247) was cloned from parsley [22] and apigenin 7-O-methyltransferase (POMT7; TC29789) was previously cloned [9]. FNS was subcloned into the NdeI/KpnI site of the pET-Duet vector (pE-FNS), and POMT7 was then subcloned into the SalI/NotI sites of pPET-Duet containing FNS (pE-POMT7-FNS). Plasmids pA-SeTAL, pA-aroG-SeTAL-TyrA, and pA-aroG^{fr}-TAL-TyrA^{fr} were constructed previously [11].

Production of Apigenin and Genkwanin

To measure the production of apigenin from p-coumaric acid, the <i>E. coli</i> transformant was grown in Luria-Bertani (LB) broth containing 50 µg/ml of chloramphenicol and spectinomycin at 37°C for 18 h. The culture was inoculated to a fresh LB medium containing 50 µg/ml of chloramphenicol and spectinomycin and incubated with shaking at 37°C until an OD₆₀₀ of 0.8 was attained. IPTG was added to the culture at a final concentration of 1 mM and the culture was allowed to incubate with shaking at 18°C for 18 h. The cells were harvested and resuspended with M9 medium containing 2% glucose, 50 µg/ml of chloramphenicol, 50 µg/ml spectinomycin, 1 mM IPTG, and 300 µM of p-coumaric acid. The resulting culture was incubated at 30°C for 24 h with shaking at 180 rpm. The culture was analyzed by high-performance liquid chromatography (HPLC) and the amount of apigenin and genkwanin was determined.
liquid chromatography (HPLC) as described previously [9].

E. coli harboring pE-POMT7-FNS was used for the production of genkwanin from naringenin. After induction of the proteins as described above, cells were collected and resuspended in fresh LB containing 50 µg/ml ampicillin. Naringenin (100 µM) and IPTG (1 mM) were added to the culture, and the culture was incubated at 30°C with shaking at 180 rpm for 15 h. The culture was analyzed by HPLC.

To synthesize genkwanin from glucose, an overnight culture of E. coli transformant was inoculated into fresh LB medium and grown until OD_{600} = 1.0. Cells were harvested and resuspended in M9 medium containing 2% glucose, 2% yeast extract, 1 mM IPTG, and 50 µg/ml antibiotics. Cells were grown at 30°C for 24 h with shaking. The reaction products were analyzed by HPLC using an Ultimate 3000 HPLC (Thermo Scientific, USA). The separation condition was as described previously [10].

ESI-MS analyses were performed, on a LCQ fleet instrument (Thermo Scientific, Waltham, MA, USA) coupled to an Ultimate 3000 HPLC system, in the negative-ion mode within the m/z range 100–500 and processed with Xcalibur software (Thermo Scientific). The operating parameters were as follows: spray voltage 4.5 kV, sheath gas 15 arbitrary units, auxiliary gas 10 arbitrary units, heated capillary temperature 275°C, capillary voltage ~15 V, tube lens ~110 V. Tandem (MS2) or triple (MS3) mass spectrometry analysis was conducted with scan-typeturbo data-dependent scanning (DD5), and the fragment spectra were produced using 35% of normalized collision energies.

Results and Discussion

Optimization of Apigenin Production

Genkwanin is synthesized from apigenin by 7-O-methylation of POMT7. The yield of apigenin is therefore critical to the subsequent yield of genkwanin. Apigenin is synthesized from p-coumaric acid by four enzymes (4CL, CHS, CHI, and FNS; Fig. 1). In E. coli, conversion of naringenin chalcone to naringenin occurs spontaneously and, therefore, the CHI that catalyzes this step is not required. We introduced three genes (Os4CL, PeCHS, and FNS) into E. coli (Strain B-AP1 in Table 1) and tested if B-AP1 synthesized apigenin from p-coumaric acid. Analysis of the culture filtrate by HPLC and mass spectrometry showed that apigenin was synthesized (data not shown).

It is known that FNS uses (S)-naringenin as a substrate [22] and that the reaction product of CHI from naringenin chalcone is (S)-naringenin. Therefore, the final yield of apigenin might be higher when CHI was used in the biosynthetic pathway of naringenin. We made two E. coli transformants (B-AP1 and B-AP2). The B-AP1 contained three genes (CHS, 4CL, and FNS), in which naringenin chalcone is spontaneously converted into naringenin, with both (R)- and (S)-naringenins being generated. The other strain, B-AP2, harbored CHI as well as the three genes (CHS, 4CL, and FNS). In B-AP2, it would be expected that naringenin chalcone is converted into (S)-naringenin, which would serve as a substrate for FNS. We tested the production of apigenin using B-AP1 and B-AP2 (Fig. 2A). B-AP2 produced more apigenin (23 mg/l) than B-AP1 (13 mg/l). This indicates that CHI converted naringenin chalcone into (S)-naringenin, which could then be used as a substrate by FNS.

4CL and CHS catalyze the first two steps of apigenin biosynthesis. Therefore, coordinated expression of 4CL and CHS in E. coli would be critical to the final yield of apigenin. We made a construct in which 4CL and CHS were cloned in an operon (i.e., one promoter controls the expression of both 4CL and CHS; pC-pPeCHS-OS4CL in Table 1), which was named B-AP3. The production of apigenin in B-AP3 was compared with that of B-AP2 (4CL and CHS are controlled by independent T7 promoter; pC-pPeCHS-OS4CL). As shown in Fig. 2A, the yield of apigenin was greater in B-AP3 (30 mg/l) than in B-AP2 (23 mg/l).

Production of Genkwanin from Glucose in E. coli

We showed that the four genes (Os4CL, PeCHS, MtCHI, and FNS) worked properly to synthesize apigenin from p-coumaric acid. In order to synthesize genkwanin from glucose, two additional genes (TAL and apigenin 7-O-methyltransferase (POMT7)) were needed. TAL uses tyrosine to make p-coumaric acid, and POMT7 catalyzes the conversion of apigenin to genkwanin. The six genes of the genkwanin biosynthetic pathway were introduced into E. coli (B-AP4) and the production of genkwanin was examined. As shown in Fig. 3B, HPLC spectra generated from E. coli transformants harboring the six genes showed several peaks. One of these peaks (at 12.5 min) had the same retention time as a genkwanin standard. The molecular mass of the peak at 12.5 min was 284 Da (Fig. 3E), which corresponded to that of a standard genkwanin (Fig. 3D).

Besides the molecular ion peak of [M-H], the fragmentation patterns at m/z 283 and the MS2 (m/z 268) and MS3 (m/z 240) of P5 (Fig. 3E) were indistinguishable to those of the standard genkwanin (Fig. 3D). In addition, P5 had a similar UV-spectrum with standard genkwanin (Fig. 3C). These results suggested that genkwanin was synthesized from glucose in the E. coli transformant.

The content of tyrosine in E. coli is critical, because p-coumaric acid is synthesized from tyrosine. The aroG (3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase) that condenses phosphoenolpyruvate (PEP) and
Biosynthesis of Two Flavones

September 2015 | Vol. 25 | No. 9

erthrose 4-phosphate (E4P) to form DAHP, and tyrA (chorismate mutase/prephenate dehydrogenase) that converts prephenate into 4-hydroxy-phenylpyruvate are the rate-limiting steps of tyrosine biosynthesis [19]. Therefore, overexpression of these two genes in E. coli increases the tyrosine content. In addition, cells carrying feedback inhibition resistance versions of these two genes (aroG\textsubscript{fbr} and tyrA\textsubscript{fbr}) were able to produce more tyrosine than with wild-type aroG and tyrA [20]. Three E. coli transformants (B-AP4 ~ B-AP6 in Table 1) were made and the production of apigenin was examined. As expected, B-AP6 (23mg/l) produced more genkwanin than E. coli harboring either B-AP4 (7mg/l) or B-AP5 (10mg/l) (Fig. 2B). HPLC profiles

Table 1. Plasmids and strains used in the present study.

<table>
<thead>
<tr>
<th>Plasmids / E. coli strain</th>
<th>Relevant properties or genetic marker</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pACYCDuet</td>
<td>P15A ori, Cmr</td>
<td>Novagen</td>
</tr>
<tr>
<td>pCDFDuet</td>
<td>CloDE13 ori, Strr</td>
<td>Novagen</td>
</tr>
<tr>
<td>pETDuet</td>
<td>f1 ori, Ampr</td>
<td>Novagen</td>
</tr>
<tr>
<td>pC-pOs4CL-pPeCHS</td>
<td>pCDFDuet harboring 4CL from \textit{Oryza sativa} and CHS from \textit{Populus euramericana}. Each gene is controlled by an independent T7 promoter.</td>
<td>[11]</td>
</tr>
<tr>
<td>pC-pPeCHS-Os4CL</td>
<td>pCDFDuet harboring CHS from \textit{Populus euramericana} and 4CL from \textit{Oryza sativa}. Both genes are controlled by one T7 promoter.</td>
<td>[11]</td>
</tr>
<tr>
<td>pC-pPeCHS-Os4CL-pMtCHI</td>
<td>pCDFDuet harboring 4CL from \textit{Oryza sativa}, CHS from \textit{Populus euramericana}, and CHI from \textit{Medicago truncatula}. Each gene is controlled by an independent T7 promoter.</td>
<td>This study</td>
</tr>
<tr>
<td>pE-FNS</td>
<td>pETDuet harboring FNS from \textit{Petroselinum crispum}</td>
<td>This study</td>
</tr>
<tr>
<td>pE-POMT7-FNS</td>
<td>pETDuet harboring POMT7 from \textit{Populus deltoids} and FNS from \textit{Petroselinum crispum}</td>
<td>This study</td>
</tr>
<tr>
<td>pA-SeTAL</td>
<td>pACYCDuet carrying TAL from \textit{Saccharothrix espanaensis}</td>
<td>[12]</td>
</tr>
<tr>
<td>pA-aroGfbr-SeTAL-tyrAfbr</td>
<td>pACYCDuet carrying TAL from \textit{S. espanaensis}, aroG, and tyrA from \textit{E. coli}</td>
<td>[12]</td>
</tr>
<tr>
<td>eA-aroGfbr-SeTAL-tyrAfbr</td>
<td>pACYCDuet carrying TAL from \textit{S. espanaensis}, aroGfbr, and tyrAfbr from \textit{E. coli}</td>
<td>This study</td>
</tr>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{E. coli} BL21 (DE3)</td>
<td>\textit{FompT hsdS}_{\text{r}}(rB,mBgal dcm lon} (DE3)</td>
<td>Novagen</td>
</tr>
<tr>
<td>B-AP1</td>
<td>BL21 harboring pC-pOs4CL-pPeCHS and pE-FNS</td>
<td>This study</td>
</tr>
<tr>
<td>B-AP2</td>
<td>BL21 harboring pC-pPeCHS-Os4CL-pMtCHI and pE-FNS</td>
<td>This study</td>
</tr>
<tr>
<td>B-AP3</td>
<td>BL21 harboring pC-pPeCHS-Os4CL-pMtCHI and pE-FNS</td>
<td>This study</td>
</tr>
<tr>
<td>B-AP4</td>
<td>BL21 harboring pA-SeTAL, pC-pPeCHS-Os4CL-pMtCHI and pE-FNS</td>
<td>This study</td>
</tr>
<tr>
<td>B-AP5</td>
<td>BL21 harboring pA-aroGfbr-SeTAL-tyrAfbr, pC-pPeCHS-Os4CL-pMtCHI and pE-FNS</td>
<td>This study</td>
</tr>
<tr>
<td>B-AP6</td>
<td>BL21 harboring pA-aroGfbr-SeTAL-tyrAfbr, pC-pPeCHS-Os4CL-pMtCHI and pE-FNS</td>
<td>This study</td>
</tr>
<tr>
<td>B-GK</td>
<td>BL21 harboring pA-aroGfbr-SeTAL-tyrAfbr, pC-pPeCHS-Os4CL-pMtCHI and pE-POMT7-FNS</td>
<td>This study</td>
</tr>
</tbody>
</table>

Fig. 2. (A) Production of apigenin by different \textit{Escherichia coli} strains and (B) effect of tyrosine on the production of genkwanin.
of the reaction product from *E. coli* harboring pA-aroG^{fs}-TAL-tyrA^{fs} still contained apigenin (data not shown). However, lower amounts of apigenin were observed in B-AP4 and B-AP5. These results revealed that introducing the feedback-insensitive *aroG* and the *tyrA* genes increases the production of flavones. Therefore, introducing the *P7OMT* gene in the *E. coli* harboring pA-aroG^{fs}-TAL-tyrA^{fs} would likely increase genkwanin production.

For the production of genkwanin from glucose, *POMT7* was transformed into B-AP6 and the resulting transformant was named B-GK. Using B-GK, the production of genkwanin from glucose was examined. Initial cell density was first determined. The cell density was adjusted to OD₆₀₀ = 0.5, 1.0, 1.5, and 2.0. The production of genkwanin was analyzed after 24 h incubation at 30°C. The cell density of OD₆₀₀ = 1.0 showed the highest yield among the tested cell densities, followed by OD₆₀₀ = 0.5, 1.5, and 2.0. Using B-GK at OD₆₀₀ = 1.0, the effect of temperature on the production of genkwanin was evaluated at 25°C, 30°C, and 37°C. The incubation temperature at 30°C gave a higher yield than 25°C or 37°C. Using the optimized cell density and reaction temperature, the production of genkwanin from glucose using the strain B-GK was monitored for 36 h. Both apigenin and genkwanin were produced rapidly. However, as observed above, apigenin was synthesized more rapidly than genkwanin. The highest production was

Fig. 3. HPLC and MS spectra of reaction products from B-AP4. (A) HPLC profile of standard genkwanin; (B) HPLC profile of reaction products. P1 was identified to be p-coumaric acid by comparing with authentic p-coumaric acid. P2 and P3 were likely to be bis-noryangonin (BNY) and naringenin chalcone, respectively. P4 was identified to be apigenin by comparing with authentic apigenin. P5 was identified to be genkwanin. (C) UV spectra of authentic genkwanin and reaction products. (D) MS1, MS2, and MS3 spectra of standard genkwanin (G). (E) MS1, MS2, and MS3 spectra of reaction product (P5).
observed at 30 h, at which time approximately 41 mg/l genkwanin was produced, while approximately 55 mg/l apigenin was remaining (Fig. 4). At 36h, the yields of both apigenin and genkwanin had declined. At the time, E. coli growth also started declining, which indicated that cells began to die. It seemed that some E. coli cell debris such as lipids and fatty acids inhibited the extraction of apigenin and genkwanin from the culture, which lowered the final yield after 36 h.

Apigenin has been synthesized from p-coumaric acid in *Saccharomyces cerevisiae* with a final yield of approximately 3.2 mg/l [17]. Apigenin was also synthesized from glucose in *E. coli* with a yield of 13 mg/l [25]. If it is assumed that there was no degradation during the biosynthesis of genkwanin, approximately 100 mg/l of apigenin was synthesized from p-coumaric acid. These differences in final yield could be a result of the host organism (*E. coli* and yeast) and/or different sources of flavone biosynthesis genes.

Apigenin was biotransformed into genkwanin by Kim *et al.* [9] with a final yield of approximately 17 mg/l, and some apigenin was not converted into genkwanin. The synthesis of genkwanin from glucose reported here was higher than that from apigenin. Therefore, the current approach could be applicable to the synthesis of apigenin derivatives from cheap or available precursors.

Until recently, flavonoid synthesis from glucose using *E. coli* was targeted to the synthesis of naringenin. Although naringenin contains several biological activities [14, 16, 26, 38], flavone and flavonol derivatives have novel activities that are not found in naringenin. Findings from the current study and others [27, 33, 38] show that flavone and flavonol derivatives can be synthesized using *E. coli* or yeast. Although it is still challenging, it should now be possible to synthesize a particular bioactive flavonoid using *E. coli*.

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (PJ01114801), Rural Development Administration, Republic of Korea, by the Basic Science Research Program (NRF-2012R1A1A2041132), and by the Priority Research Centers Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2009-0093824)

References

