Chemical Modification of Botryosphaeran: Structural Characterization and Anticoagulant Activity of a Water-Soluble Sulfonated (1→3)(1→6)-β-D-Glucan

Brandi, Jamile1, Éder C. Oliveira1, Nilson K. Monteiro1, Ana Flora D. Vasconcelos1, Robert F.H. Dekker2, Aneli M. Barbosa3, Joana L. M. Silveira4, Paulo A. S. Mourão5, and Maria de Lourdes Corradi da Silva1*

1Departamento de Física, Química e Biologia, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, CEP 19060-900, Presidente Prudente - São Paulo, Brazil
2Biorefining Research Institute, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada
3Departamento de Bioquímica e Biociências, Universidade Federal do Piauí, CEP 85131-980, Teresina - Piauí, Brazil
4Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CEP 81531-980, Curitiba - Paraná, Brazil
5Laboratório de Tecido Conjuntivo, H. U. Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, CEP 21941-590, Rio de Janeiro - RJ, Brazil

Received: May 13, 2011 / Revised: June 28, 2011 / Accepted: June 29, 2011

The exopolysaccharide botryosphaeran (EPSGLC; a (1→3)(1→6)-β-D-glucan from Botryosphaeria rhodina MAMB-05) was sulfonated to produce a water-soluble fraction (EPSGLC-S) using pyridine and chlorosulfonic acid in formamid. This procedure was then repeated twice to produce another fraction (EPSGLC-RS) with a higher degree of substitution (DS, 1.64). The purity of each botryosphaeran sample (unsulfonated and sulfonated) was assessed by gel filtration chromatography (Sepharose CL-4B), where each polysaccharide was eluted as a single symmetrical peak. The structures of the sulfonated and re-sulfonated botryosphaerans were investigated using ultraviolet–visible (UV–Vis), Fourier-transform infrared (FT-IR), and 13C nuclear magnetic resonance (13C NMR) spectroscopies. EPSGLC and EPSGLC-RS were also assayed for anticoagulation activity, and EPSGLC-RS was identified as an anticoagulant.

Keywords: Botryosphaeran, sulfonation, anticoagulant activity, Botryosphaeria rhodina MAMB-05

Glucans of the (1→3)(1→6)-β-D-glucan type are an important class of fungal polysaccharides that possess interesting biological-response-modifying activities, such as anticancer, anti-inflammatory, and immunomodulation effects [6, 7, 16, 29]. The action mechanisms of these biopolymers, however, are still not clearly understood, in spite of the plethora of knowledge on their activities [6, 29]. Structurally, the biological activities of these carbohydrate macromolecules are specifically related to their monosaccharide composition, degree of branching, degree of polymerization, the conformation of their constituent chains, and conformation in solution [7, 16, 27]. In addition, their high molecular weight, triple helix conformational structure, and β-(1→6) branching are all favorable structural features [7, 31]. Yet, when combined, these features can lead to solubility problems, imposing obstacles to their application [32]. Attempts to overcome this problem have included fragmentation of the polysaccharides into short chain lengths [15] through chemical or enzymatic hydrolyses [11].

The chemical modification of polysaccharides by sulfonation has been widely studied owing to the advantages of the products so obtained. Thus, sulfonation methods have already been developed for different polysaccharides, including curdlan [2], fucoidan [28], dextran [19], and the botryosphaeran produced on fructose (EPSFRU) as a carbon source [23]. It is well known that the introduction of a charged group to a polysaccharide chain improves its water solubility and can lead to enhanced biological activities, such as anticoagulation and antithrombotic effects [3, 13, 23], as well as anti-HIV [18] and antitumor activities [17]. However, these activities are also affected by certain parameters, such as the degree of substitution, degree of branching, molecular weight, and type of sugar constituents [12, 22, 36] comprising the derivatized polysaccharides. Therefore, sulfonation is a rational choice [1].

*Corresponding author
Phone: +55 18 3229 5743; Fax: +55 18 3221 5682;
E-mail: corradi@fct.unesp.br
Botryosphaeria rhodina MAMB-05, an endophytic fungus, produces a family of exopolysaccharides (EPS), named botryosphaerans, structurally characterized as $(1→3)(1→6)-β−d−glucans$ [4] and responsible for increasing the medium viscosity in growing cultures [9] depending on the type of carbon source (carbohydrate) used for growth of the fungus [8, 30]. The botryosphaeran obtained from *B. rhodina* MAMB-05 grown on fructose (EPS$_{FRU}$) was found to show a greater degree of branching with $(1→6)-β$-linked substituents along the $(1→3)-β$-glucan chain and formed a less viscous aqueous solution than botryosphaerans MAMB-05 grown on glucose (EPS$_{GLC}$) solutions exhibited by the botryosphaeran from *B. rhodina* exhibiting lower solubility and higher viscosity in aqueous media [25].

Botryosphaeran has presented some interesting biological effects at low concentrations that include non-mutagenic and strong anticlastogenic activities [24], and anticoagulant activity in hyperlipidemia-induced rats fed a high-fat diet [25]. Accordingly, the aim of the present work was to overcome the lower solubility and higher viscosity in aqueous solutions exhibited by the botryosphaeran from *B. rhodina* MAMB-05 grown on glucose (EPS$_{GLC}$) through chemical modification by sulfonation. The anticoagulation activity of the sulfonated exopolysaccharide was also evaluated.

Materials and Methods

Materials

The chlorosulfonic acid was purchased from Vetec (Rio de Janeiro-RJ, Brazil). The thrombin and antithrombin were obtained from Haematologic Technologies USA, and the chromogenic substrate S-2238 from Chromogenix-Sweden. The sodium heparin (5,000 U/ml) was purchased from Akzo Organon (São Paulo, Brazil). The human plasma was obtained by centrifugation (450 × g/15 min at 24°C) of citrated blood. The blood coagulation time reagents, such as the activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT), were all purchased from In-Vitro Diagnostica S/A (Itabira-MG, Brazil).

Production and Preparation of Botryosphaeran

The botryosphaeran (EPS$_{GLC}$) was produced by *Botryosphaeria rhodina* MAMB-05 grown on a Vogel minimal salts medium with glucose as the carbon source, and prepared according to the procedure previously outlined by Steluti et al. [30] and Barbosa et al. [4].

Analytical Techniques

The carbohydrate was determined using the phenol-sulfuric acid method according to Dubois et al. [10] with $β$-glucose as the standard sugar. The protein was measured using the Bradford method [5] with bovine serum albumin as the standard.

Sulfonation of Botryosphaeran

The sulfonation of the botryosphaeran (EPS$_{GLC}$) was performed according to the method of O’Neill [26], as modified by Mendes et al. [23]. The resulting sulfonated product was referred to as EPS$_{GLC}$-S. The sulfonation reaction was repeated two more times using a portion of EPS$_{GLC}$-S to obtain an oversulfonated product, designated EPS$_{GLC}$-RS.

Gel Filtration Chromatography

Samples of the botryosphaerans (EPS$_{GLC}$-S, EPS$_{GLC}$-RS, and EPS$_{GLC}$-RS; 1 mg) were each dissolved in 1 ml of distilled water, fractionated using a column of Sepharose CL-4B (28.8 × 1.5 cm), and eluted with water (0.5 ml/min). Fractions of 1.5 ml were then collected and analyzed for carbohydrate using the phenol-sulfuric acid method. The column was calibrated using blue dextran (Sigma) and the absorbance measured at 625 nm.

Determination of Degree of Substitution (DS)

Samples of EPS$_{GLC}$-S and EPS$_{GLC}$-RS (1 mg/ml) were each hydrolyzed using 1.0 M HCl for 5 h at 100°C. The DS was then determined as previously described by Mendes et al. [23]. The DS, which designates the average number of sulfonated groups in each sugar residue, was established on the basis of the sulfur content determined from the formulae below [34], where $S = %$ sulfur:

$$S(%) = \frac{(\text{BaSO}_4, \text{µg}) \times 0.1374 \times 100}{(\text{Sample, µg})}$$

$$DS = \frac{162 \times S}{(3200 − 102 \times S)}$$

Structural Analysis

The UV–Vis absorption spectra for dilute aqueous solutions (1 mg/ml) of the sulfonated (EPS$_{GLC}$-S and EPS$_{GLC}$-RS) and non-sulfonated (EPS$_{GLC}$) botryosphaerans were determined using a Shimadzu 1601 UV–Vis spectrophotometer. The Fourier-transform infrared (FT-IR) spectra for the botryosphaeran samples (EPS$_{GLC}$-S, EPS$_{GLC}$-RS, and EPS$_{GLC}$; 1 mg of each) were recorded on KBr disks (250 mg) using a Bruker Vector 22 Model spectrometer. The 1^3C nuclear magnetic resonance (1C NMR) spectra were obtained using a 400 MHz Bruker model DRX Avance spectrometer with a 5mm inverse probe. The 1C nuclear magnetic resonance spectra were then performed at 50°C using samples dissolved in D$_2$O. The chemical shifts are expressed in ppm (δ) relative to acetone at δ 30.20 for the 1C signals.

Assays for Blood Clotting

The anticoagulant activity of the botryosphaerans (EPS$_{GLC}$-S; and its sulfonated derivative, EPS$_{GLC}$-RS; 0–200 µg/ml) was determined by measuring the clotting times (s) of human plasma at 37°C when employing the reagents PT, TT, and APTT according to the manufacturer’s instructions, as described elsewhere [23]. The assays were performed in triplicate and the results represent the mean ± SD.

Thrombin Inhibition by Antithrombin in the Presence of EPS$_{GLC}$-RS, EPS$_{GLC}$-S, and Heparin

The inhibition assays of thrombin by antithrombin were performed according to Melo et al. [21] with modifications, as previously described [23], over a 300 s period. No inhibition occurred in the control experiments, in which thrombin was incubated with antithrombin in the absence of the sulfonated polysaccharides [21].
RESULTS AND DISCUSSION

Sulfonation and Structural Characterisation

The solvent systems in which polysaccharides are immersed play an important role in their chemical reactions, including derivatization by sulfonation [35]. The solvents N,N-dimethyl formamide (DMF) and formamide (FA), commonly used in sulfonation reactions, were tested to solubilize the botryosphaeran. FA showed the best capacity to dissolve the botryosphaeran, but the polysaccharide was almost insoluble in DMF, an aprotic polar solvent. The water solubility of the sulfonated and re-sulfonated botryosphaeran depended on the molar ratio of chlorosulfonic acid-to-hydroxyl groups in the polysaccharide molecule [27]. The reaction time and temperature were chosen to present mild conditions in order to minimize any degradation of the polysaccharide chain. Pyridine is an important part of the sulfonation reaction, acting as a catalytic reagent. As a strong organic base, pyridine nucleophilically attacks the entrance of the sulfonation reagent.

Gel permeation chromatography of the botryosphaeran prior to the sulfonation reaction revealed only one eluted fraction after the void volume (18.1 ml), indicating that the polysaccharide was homogeneous. The sulfonated fraction after the void volume (18.1 ml), indicating that prior to the sulfonation reaction revealed only one eluted peak was missing from the spectrum of the unsulfonated botryosphaeran. This peak was due to the n → π* transition of sulfonate or the formation of an unsaturated bond during the sulfonation process [1]. This peak was missing from the spectrum of the unsulfonated botryosphaeran. The FT-IR spectra (Fig. 1) indicated that sulfonoyl groups were inserted into the botryosphaeran molecule. Some characteristic bands at 1,252 cm⁻¹ indicated an asymmetrical stretching vibration, whereas the band at 807 cm⁻¹ was typical of a symmetrical C-O-S vibration associated with a C-O-SO₃⁻ group [1].

The ¹³C NMR chemical shift assignments for the botryosphaeran samples EPS₆GLC-S and EPS₆GLC-RS are shown in Table 1. When compared with the original botryosphaeran, the ¹³C NMR spectra of the sulfonated polysaccharides [12] were more complicated with broader signals, resulting from the sulfonation of the hydroxyl groups. The anomeric carbon signals were also split into more peaks, another result of the sulfonation. The region at 68.0 ppm. When considering that the botryosphaeran is a β-(1→3)-glucan with 22% side branching at C-6 by glucosyl and gentiobiosyl residues [4], substitution at C-2 and C-4 by sulfonyl groups should have been more difficult owing to steric hindrance. However, the appearance of new peaks upfield (β shift) at 101.4, 100.9, and 100.6
1039 Brandi et al.

Table 1. 13C NMR chemical shift data for botryosphaeran and sulfonated botryosphaerans (EPS$_{GLC}$-S and EPS$_{GLC}$-RS) measured at 30°C.

<table>
<thead>
<tr>
<th>Linked-glucose residue</th>
<th>Chemical shifts (δ, ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-1</td>
</tr>
<tr>
<td>Glcp-(1→6)-Glc/(1→3)</td>
<td>103.3</td>
</tr>
<tr>
<td>Glcp-(1→3,6)-Glc/(1→3,6)</td>
<td>102.9</td>
</tr>
<tr>
<td>EPS${GLC}$-S, EPS${GLC}$-RS*</td>
<td>101.3</td>
</tr>
</tbody>
</table>

*Chemical shifts found at O-sulfonated botryosphaeran.

ppm in the 13C NMR spectra of EPS$_{GLC}$-S and EPS$_{GLC}$-RS was ascribed to the signal of C-1, probably because the anomeric region was influenced by the adjacent C-2 substitution [12].

Anticoagulation Activity of Sulfonated Botryosphaeran, EPS$_{GLC}$-RS

APTT, TT, and PT clotting times. Blood clotting is the result of a complex process initiated by an intrinsic or extrinsic system and/or a common pathway. The various coagulation assays indicate the interaction with the different stages of the coagulation process and provide basic information on the mode of action of anticoagulants [33]. Table 2 shows the anticoagulant activities of EPS$_{GLC}$-RS and EPS$_{GLC}$ as measured by the APTT, TT, and PT clotting times, and compares these results with those for heparin. EPS$_{GLC}$-RS was able to prolong the APTT and TT in a concentration-dependent manner. As regards the APTT and TT, the anticoagulant effect of EPS$_{GLC}$-RS with 30 and 40 µg/ml of plasma was ~6.8 and ~10 times greater, respectively, than that of the control. Therefore, these results demonstrate an important in vitro anticoagulant activity related to EPS$_{GLC}$-RS, as evidenced by the increase in the dose-dependence of the APTT and TT, and this activity could be attributable to the high degree of sulfonation of the botryosphaeran (DS 1.64). Previous literature has stated that anticoagulant activity always increases with the DS, and a DS of >0.8 is necessary [13]. Prolongation of

Table 2. Anticoagulant activity of normal human plasma in the presence of botryosphaeran (EPS$_{GLC}$), re-sulfonated botryosphaeran (EPS$_{GLC}$-RS), and heparin, measured according to activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT).

<table>
<thead>
<tr>
<th>Polysaccharide</th>
<th>Amount (µg/ml)</th>
<th>APTT (s)</th>
<th>TT (s)</th>
<th>PT (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS$_{GLC}$</td>
<td>Control (0)</td>
<td>30.4 ± 0.2</td>
<td>14.9 ± 0.1</td>
<td>15.5 ± 0.25</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>27.7 ± 0.1</td>
<td>14.2 ± 0.3</td>
<td>15.5 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>29.7 ± 0.9</td>
<td>15.9 ± 1.2</td>
<td>14.1 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>32.0 ± 0.8</td>
<td>15.7 ± 0.4</td>
<td>15.5 ± 0.7</td>
</tr>
<tr>
<td>EPS$_{GLC}$-RS</td>
<td>Control (0)</td>
<td>30.4 ± 0.2</td>
<td>14.9 ± 0.1</td>
<td>15.5 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>59.6 ± 0.8</td>
<td>24.4 ± 0.8</td>
<td>15.5 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>96.7 ± 3.4</td>
<td>29.8 ± 0.2</td>
<td>16.3 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>117.5 ± 2.8</td>
<td>41.2 ± 1.3</td>
<td>16.1 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>205.1 ± 2.9</td>
<td>101.7 ± 0.9</td>
<td>16.6 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>304.5 ± 2.3</td>
<td>157.7 ± 0.01</td>
<td>16.1 ± 0.2</td>
</tr>
<tr>
<td>Heparin*</td>
<td>Control (0)</td>
<td>30.4 ± 0.2</td>
<td>14.9 ± 0.1</td>
<td>15.5 ± 0.25</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>44.0 ± 1.0</td>
<td>27.9 ± 1.4</td>
<td>15.8 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>67.7 ± 2.9</td>
<td>50.0 ± 0.7</td>
<td>16.1 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>100.1 ± 3.6</td>
<td>88.2 ± 8.3</td>
<td>16.6 ± 0.1</td>
</tr>
</tbody>
</table>

*Sodium heparin, 5,000 UI/ml. The results represent mean times ± SD.
the APTT suggests inhibition of the intrinsic coagulation pathway, whereas prolongation of the TT indicates the inhibition of thrombin-mediated fibrin formation [20]. Since the anticoagulant effect of heparin is not mediated by modulation of the extrinsic system, it would appear that EPS_{GLC}-RS is a poor inhibitor of the extrinsic pathway. When the APTT and TT values were compared with those for heparin, an ~10 times greater concentration of EPS_{GLC}-RS was necessary to obtain the same degree of effect as heparin. In this respect, polysaccharides with a lower anticoagulant activity than that of heparin could exhibit a potent antithrombotic effect with fewer hemorrhagic risks [14]. As with heparin, the weakest effect of the sulfonated botryosphaeran was observed in the PT assay. The relative lack of effect of EPS_{GLC}-RS on the PT is consistent with the observation that this test is also not sensitive to heparin and several other sulfated polysaccharides [37]. The unsulfonated botryosphaeran did not inhibit the APTT, TT, and PT assays, as the presence of sulfonyl groups is an essential requirement for these anticoagulant activities.

Inhibition of thrombin by antithrombin in the presence of EPS_{GLC}-RS and EPS_{GLC} To elucidate the inhibitory mechanism of the anticoagulant activity of EPS_{GLC}-RS, its effect on thrombin activity was measured using chromogenic substrates in the presence of plasma as a source of physiological inhibitors (antithrombin and heparin cofactor II) and also purified antithrombin.

According to the results, EPS_{GLC}-RS was able to potentiate thrombin inhibition in a manner similar to that of heparin (Fig. 2). However, the sulfonated polysaccharide concentrations required to obtain a 50% inhibition of thrombin activity were higher than the required concentrations of heparin. According to the IC_{50} values (Fig. 2) from the tests using human plasma, the activity of EPS_{GLC}-RS was 19 times lower than that of heparin, and 73 times lower when using purified antithrombin. The difference between these assays was probably due to EPS_{GLC}-RS, which was necessary to increase the action of heparin cofactor II, another physiological inhibitor of thrombin present in plasma and absent from the tests using purified antithrombin.

Therefore, the results obtained from this study demonstrated that EPS_{GLC}-RS had a higher anticoagulant activity than the re-sulfonated EPS_{FRU} [23]. One explanation for this difference is that the re-sulfonated EPS_{FRU} had more branches at C_{6}, hindering the entry of sulfonyl groups at the primary hydroxyl.

Concluding Remarks

Difficulties were encountered in solubilizing the examined botryosphaeran in appropriate solvents for sulfonation. Among the solvents tested, formamide showed the best capacity to dissolve the botryosphaeran, and was subsequently used in the sulfonation reaction. The sulfonation was performed under mild conditions (low temperature) to prevent sample degradation. The EPS_{GLC}-S and EPS_{GLC}-RS preparations were not degraded, as demonstrated by gel filtration chromatography. Finally, this study demonstrated that sulfonation of the botryosphaeran (as EPS_{GLC}-RS) produced anticoagulant activity *in vitro*.

Acknowledgments

The authors are grateful to FAPESP (05/53879-3), Fundação Araucária (Projeto 5777), PROPPG-UEL, and Pronex/Carboídratos for their financial support. J. Brandi and N.K. Monteiro gratefully acknowledge FAPESP (05/50936-6) and CNPq-PIBIC, respectively, for their scholarships.
REFERENCES

